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Abstract— Automatic and accurate classification of
apoptosis, or programmed cell death, will facilitate cell
biology research. The state-of-the-art approaches in
apoptosis classification use deep convolutional neural
networks (CNNs). However, these networks are not efficient
in encoding the part-whole relationships, thus requiring a
large number of training samples to achieve robust general-
ization. This paper proposes an efficient variant of capsule
networks (CapsNets) as an alternative to CNNs. Extensive
experimental results demonstrate that the proposed
CapsNets achieve competitive performances in target cell
apoptosis classification, while significantly outperforming
CNNs when the number of training samples is small.
To utilize temporal information within microscopy videos,
we propose a recurrent CapsNet constructed by stacking
a CapsNet and a bi-directional long short-term recurrent
structure. Our experiments show that when considering
temporal constraints, the recurrent CapsNet achieves
93.8% accuracy and makes significantly more consistent
prediction than NNs.

Index Terms— Apoptosis, capsule network, cell
classification.

I. INTRODUCTION

APOPTOSIS is programmed cell death, which occurs in
a well-organized manner with a series of biochemical

and morphological changes [1]. The process of apoptosis
includes cell shrinking, membrane blebbing, deoxyribonu-
cleic acid (DNA) degradation and in some cases depending
on the size of the target cells, the formation of apoptotic
bodies [2]. Automatic detection or classification of apopto-
sis has been in great need recently following the devel-
opment of high-throughput screening assays [3]–[6]. More
recently, with the advancements in immunotherapy for the
treatment of cancer, single-cell methods like TIMING (time-
lapse microscopy in nanowell grids) [7], [8] enable the mon-
itoring of interactions between immune cells [9], [10] and
cancer cells in hundreds of thousands of sub-nanoliter wells.
These assays have been used to understand the biology of
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Fig. 1. A sample illustration of capsule activations at different layers
for the network proposed in [19] Top: four sample images associated
to life-span of a specific target cell when it is: (a) static, (b) moving
horizontally, (c) approached by an effector cell, and (d) killed by the
effector cell. Middle: the corresponding grids of child capsule activations
in PrimaryCaps layer which includes 32 grid of capsules. Each grid is
called a Capsule Type and contains � × � capsules. Each capsule at
this layer is a group of 8 neurons, thus outputs an 8-dimensional vector
shown by a blue arrow. Theoretically, each capsule type is responsible for
detecting a specific feature in the input image. In this example, the front
capsule type is recognizing the edges of cell body. Bottom: final capsule
layer called CellCaps which contains two capsule types; one for each
class (dead vs. live). Prediction is made according to the length of output
activation vectors.

the immune cells, and their interaction with tumor cells,
in a number of preclinical settings [11], [12]. Traditional
methods using biochemical assays [13] to tag apoptotic cells
are widely used, such as fluorophore-conjugated Annexin V
[14]–[16] and SYTOX [17]. However, cytotoxicity of chem-
ical assays and phototoxicity due to exposure to light in
fluorescent microscopy could adversely affect cell behaviors
and lead to cell death [18]. Non-destructive phase contrast
microscopy provides a potential label-free solution to apop-
tosis classification.

While apoptotic patterns have visual saliency, label-free
apoptosis classification is challenging from the algorithmic
perspective. The disparity in appearance exists between apop-
totic cells. This is due to either characteristic of individual
cells or the different times the images are taken. For example,
the apoptotic cells at the membrane blebbing stage may look
quite different from the ones at DNA degradation stage with
chromatin condensation. Previous works on label-free apop-
tosis classification or detection are mostly based on simple
heuristics, e.g., a terminated cell tracks could possibly indicate
an apoptosis event [18]. More advanced method models the
imaging physics of phase contrast microscopy to restore the
original images [20] and identifies apoptosis using handcrafted
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features including changes of brightness and contrast as well
as local binary patterns [18]. All these previous methods are
either too simple and subject to multiple sources of interfer-
ences or have a comparatively complex model which still has
limitations dealing with large variances.

In the last few years, deep learning methods, such as con-
volutional neural networks (CNNs), have shown remarkable
performance for a wide range of computer vision tasks. Specif-
ically related to the classification problem, AlexNet [21],
ResNet [22], and DenseNet [23] achieved the state-of-the-art
recognition level and have been adopted as the desired models
for various medical imaging tasks. Recently, many researchers
work on designing deep networks which are more suitable
for their tasks. This leads to more complex models with a
huge number of parameter and hyper-parameters to be tuned
which makes the overall network harder to be optimized. This
motivates the development of new techniques to address the
fundamental limitations of the current CNN structures.

One fundamental drawback of CNNs is the way they route
information between layers. Routing is the mechanism of
relaying information from one layer to the next layer in the
network. CNNs currently perform routing via pooling layers,
most commonly being max-pooling and average pooling.
However, pooling is a naive way of routing as it discards
information about the precise location and pose of the entity
within the region which can be valuable for the classification
purpose. This gives a limited translation invariance in which a
feature can slightly move within the pooling window and still
does not change the network’s output.

Moreover, while CNNs are translation invariant (and par-
tially rotational invariant while using data augmentation), they
are unable to identify the position of one object relative to
another [24], [25]. They can only identify if the object exists
in a certain region or not. Therefore, it makes it difficult to
correctly identify objects with spatial relationships between
features. For example, a set of randomly assembled face parts
might look like a face to a CNN as it sees all the key features.

Recently, Sabour et al. [19] introduced a new architecture
called Capsule Network (CapsNet in short) to address CNNs
shortcomings. The idea is to encode the relative relationships
(e.g., locations, scales, orientations) between local parts and
the whole object. Encoding these relationships equips the
model with a built-in understanding of the 3-dimensional
space. This makes CapsNets more invariant to viewpoint
which enables them to recognize objects from different view-
points not seen in the training data.

While CapsNets are shown to achieve promising per-
formance in some tasks, they do not scale well to
high-dimensional data. The required number of parameters
grows rapidly which makes the routing computationally expen-
sive and intractable. Moreover, it remains unclear whether
CapsNets are appropriate for dealing with temporally varying
data. Our paper makes the following contributions:

1) We propose an efficient variant of capsule networks. Our
networks achieve higher computational efficiency by
sharing the transformation matrices across capsules of
the same type, locally-constraining the dynamic routing,
and imposing a spatially consistent voting mechanism.
These changes dramatically reduce the number of para-

meters and enable us to make capsule networks deeper to
work with larger images. Extensive experimental results
show that the proposed networks compare favorably to
CNNs when the training set is large, and significantly
outperform CNNs for small-size datasets.

2) We investigate the performance of capsule networks for
temporal classification. The proposed architecture con-
sists of a capsule network stacked with a bi-directional
long short-term recurrent network. The proposed archi-
tecture extracts richer features than those from CNNs,
illustrated by higher classification accuracy and temporal
consistency.

3) The proposed CapsNets are extensively evaluated against
CNNs on the apoptosis classification task. We provide
visualization to compare important image features cap-
tured by CNNs and CapsNets. We observe that CNNs
tend to make decisions based on a small region in
the image while CapsNets collectively make predictions
based on a larger image region.

The rest of this paper is organized as follows: works
related to capsule networks and its variants are presented in
Section II. Section III explains the original capsule network, its
limitations, and the proposed network architecture. Section IV
describes the dataset used in this study. Experimental results
are presented in Section V. Section VI concludes the paper
with future research directions.

II. RELATED WORK

Since CNNs are not efficient in capturing the hierarchical
relationship between the entities in the image, CapsNets are
introduced as a structure capable of encoding the part-whole
relationship. CapsNets employ a dynamic routing mechanism
to determine where to send the information. Sabour et al. [19]
successfully used this algorithm for training the network on
hand-written images of digits (MNIST) and achieved state-of-
the-art performance. In [26], Hinton introduces matrix cap-
sules with expected-maximization (EM) routing to encode
the relationship between entities. Bahadori [27] proposes a
novel variation of capsule networks, called spectral cap-
sule networks, that is more stable than the capsule network
with EM routing, and converges faster as well. Multi-scale
CapsNet [28] is another variation of capsule networks which
employs a two-stage processing for extracting and encoding
the hierarchy of features. It also uses a modified dropout to
improve the robustness of the network and achieves competi-
tive performance on FashionMNIST and CIFAR-10 datasets.

CapsNets has also been adopted into various tasks
and fields. CapsuleGAN [29] is proposed as a generative
model which uses a CapsNet discriminator to replace the
standard CNN. Siamese CapsNet [30] is introduced as a vari-
ant utilized in a pairwise learning task. Capsule networks
have been recently used in medical image analysis tasks and
achieved remarkable results. Our preliminary work proposed
Fast CapsNets [31] which achieve promising results in the
lung cancer screening task. LaLonde and Bagci [32] pro-
posed a convolutional-deconvolutional capsule network, which
expands capsule networks to segment pathological lungs from
low dose CT scans. These studies show the potential of
CapsNet to scale to large and volumetric images. However,
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Fig. 2. Connections between the child and parent capsules in a face detection example. Left: each child capsule encodes the detailed information
about the lower-level entities (such as nose, mouth, etc.) in its output �i. Then every child predicts the output of the parent capsule. In our example,
the mouth capsule tries to answer: “how is the face going to look like given the mouth pose”. It makes this prediction by computing the dot-product
of a transformation matrix (�3j) with its own activation vector, �3. Right: routing by agreement: dynamic routing will ensure that a child capsule will
send information to the parent capsules that agree with its prediction. In other words, if several children capsules point at the same pose of the face,
then it must be a face there.

the original CapsNets with dynamic routing experience unsta-
ble training when the number of layers increases. This has also
been noticed in [33]. Our paper introduces a deeper capsule
network in which, similar to CNNs, the hidden capsules are
connected locally and trainable parameters are shared. The
proposed network maintains the classification power of capsule
networks while requiring a dramatically smaller number of
parameters. It performs favorably on large images even when
the number of training samples is small. Most of the existing
work does not provide a deep understanding of how CNNs
and CapsNets differ in making their decisions. This paper
gives a visualization to help us understand this better. Finally,
we extensively evaluate the performance of the proposed
capsule network on a temporal classification task, which have
not been sufficiently studied in the related prior works.

III. METHODOLOGY

A. Background on Capsule Network

1) Capsule Computation: A capsule is defined as a group
of neurons whose outputs form an activation vector. They
predict the presence and the pose parameters of a particular
object at a given pixel location. The direction of an activation
vector captures the object’s pose information, such as location
and orientation, while the length (a.k.a norm or magnitude)
of the activation vector represents the probability that an
object of interest exists. For instance, if we rotate an image,
the activation vectors also change accordingly, but their lengths
stay the same. This property is usually referred to as equivari-
ance. Fig. 2 illustrates the way CapsNets route information
from one layer to another layer, using face detection as an
example. The length of the activation vector from a lower-level
capsule (u1, u2, . . . , uI ) encodes the existence probability of
its corresponding entity (e.g. eyes, nose, and mouth). The
direction of the vector encodes various properties of the entity,
such as its size, orientation, position, etc.

The relationship between i -th capsule in a lower layer and
j -th capsule in the next higher layer is encoded using a linear
transformation matrix Wi j . The information is propagated as:
û j |i = Wi j ui . The vector ûi j represents the belief of i -th
capsule in a lower layer about j -th capsule in the higher layer.
In our example, û j |1 represents the predicted pose of the face
according to the detected pose of the nose. During the training,
the network will gradually learn a transformation matrix for
each capsule pair to encode the corresponding part-whole
relationship.

2) Dynamic Routing: Having computed the prediction vec-
tors, the lower-level capsules then route their information to
parent capsules that agree the most with their predictions.
The mechanism that ensures that the outputs of the child
capsules get sent to the proper parent capsules is named
dynamic routing. Let ci j denotes the routing coefficient from
i -th capsule in the lower layer to j -th capsule in the higher
layer, where

∑
j ci j = 1 and ci j ≥ 0, ∀ j . When ci j = 1, all

information from i -th capsule will be sent to j -th capsule,
whereas when ci j = 0, there is no information flowing
between the two capsules. Dynamic routing method iteratively
tunes the ci j coefficients and routes the child capsules’ outputs
to the appropriate capsule in the next layer so that they get a
cleaner input, thus determining the pose of the objects more
accurately.

The right panel of Fig. 2 shows a lower-level capsule (e.g.
nose capsule) making a decision to send its output to the
parent capsules. This decision is made by adjusting the routing
coefficients, ci j , that will be multiplied by the prediction
vectors before sending it to high-level capsules. CapsNets
compute the parent capsules activation vector (v j ) and routing
coefficients as follows:

v j = ||s j ||2
1+ ||s j ||2

s j

||s j || , s j =
∑

i

ci j û j |i , (1)

ci j = exp(bi j )∑
k exp(bik)

, bi j ← bi j + û j |i .v j . (2)

The output of each parent capsule v j is computed as the
weighted sum of all predictions from child capsules (i.e. s j ),
then passed through a squash non-linearity. Squashing makes
sure that the output vector has a length no more than 1 (so
that its length can be interpreted as the probability that a given
feature being detected by the capsule) without changing its
direction. Each parent capsule receives predictions (û j |i ) from
all children capsules. These vectors are represented by points
in Fig. 2. The dynamic routing mechanism will increase the
routing coefficient to parent capsule- j by a factor of û j |i .v j
whose value increases for the similar vectors. Thus a child
capsule will send more information to the parent capsule
whose output v j is more similar to its prediction û j |i .

3) Capsule Network Architecture: The original capsule net-
work contains two main parts: encoder and decoder, depicted
in the first two figures of [19]. The encoder contains three
layers: two convolution layers and one fully-connected layer.
The first layer is a standard convolution layer with 256 filters
of size 9× 9 and stride 1, followed by ReLU activation. The
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next layer is a convolutional capsule layer called the Prima-
ryCaps layer. Capsules are arranged in 32 channels (commonly
referred to as 32 capsule types) where each primary capsule
applies 8 convolutional filters of size 9× 9 and stride 2 to the
input volume. Therefore, each primary capsule sees the outputs
of all 256 (the whole input depth) × 81 (that falls inside the
9×9 filter) units of the first convolutional layer. In this setting,
all PrimaryCaps in each of the 32 channels share their weights
with each other and each capsule outputs an 8-dimensional
vector of activations. The last layer is called DigitCaps layer
which has one 16D capsule per class. Routing takes place
in between these capsules and all PrimaryCaps, encoding the
input into 16-dimensional activation vector of instantiation
parameters. The lengths of these prediction vectors are used
to determine the predicted class.

The decoder tries to reconstruct the input from the final
capsules, which will force the network to preserve as much
information from the input as possible across the whole net-
work. This effectively works as a regularizer that reduces the
risk of over-fitting and helps generalize to new samples. In the
decoder, the 16D outputs of the final capsules are all masked
out (set to zero) except for the ones corresponding to the
target (while training) or predicted (while testing) class. They
proposed using a three-layer feed-forward neural network with
512, 1024, and 784 units to reconstruct the input image.

B. Capsule Network With Convolutional Routing

In the original capsule network described above, all Pri-
maryCaps are linked and route information to all Digit-
Caps. The routing coefficients are computed by the iterative
dynamic routing process and the transformation matrices Wi j
are trained through back-propagation. While dynamic routing
has been shown to improve the classification accuracy of
CapsNet [19], this operation is computationally expensive and
does not scale well to high dimensional data. Technically,
the number of DigitCaps is bounded by the number of
classes. However, the number of PrimaryCaps increases with
the size of input images. This will dramatically increase the
required number of routing coefficients (ci j ), thus do not
scale to large input images. Moreover, according to [19], each
child-parent capsule pair requires a unique transformation
matrix Wi j . Therefore, both the number of non-trainable (ci j )
and trainable (Wi j ) parameters increases with the input size.
This makes dynamic routing the bottleneck of the capsule
networks.

A naive solution is to reduce the number of PrimaryCaps
by changing the hyper-parameters of the preceding layers; e.g.
increasing the strides of the convolutional layers or the number
of strided convolutional layers. This practically results in more
information loss and causes a significant drop in the classifica-
tion accuracy. Instead, we propose the following modifications
to the routing mechanism which dramatically reduces the
number of parameters in the network while enhancing the
information routing stability and the overall model prediction
accuracy.

1) Convolutional Dynamic Routing: Inspired by the local
connectivity of the neurons in CNNs, [32] proposed
locally-constraining the information routing; meaning that

Fig. 3. Depicts the techniques incorporated to solve the memory burden
and parameter explosion and make the capsule network deeper. Different
capsule types are shown in different colors. (a) Convolutional dynamic
routing in which the transformation matrices are shared across capsules
of the same type, and a parent capsule positioned at point (h, w) receives
information from a sub-grid of capsules bounded in a user-defined kernel
of size (kh × kw) centered at (h, w). (b) The imposed consistent voting
technique where children capsules at the same spatial location (and of
different types) are restricted to agree on their votes to the parent capsule.

only child capsules within a user-defined kernel centered at
position (x, y) are able to route to parent capsules placed at
(x, y) position of the next layer. Therefore, we call capsule
layers with locally-constrained routing convolutional capsule
layer, compared with the fully-connected capsule layer pro-
posed in the original structure. Similar to the idea of shar-
ing weights in CNNs, we share the learnable transformation
matrices across capsules of the same type. Here, capsule type
is referred to a capsule (or a group of capsules) detecting a
specific feature in the input. In the original capsule network
proposed in [19], there exist 32 capsule types in the Prima-
ryCaps layer and one capsule type per class in the DigitCaps
layer. Transformation matrix sharing will, therefore, reduce
the required number of Wi j matrices by a factor equal to the
number of members of each capsule type (e.g. we require only
32 matrices instead of 6 × 6 × 32 matrices for the original
CapsNet of Fig. 1).

Assume having a H l ×Wl grid of dl-dimensional capsules
of T l different types at layer l. These capsules form a H l ×
Wl×T l grid. Likewise, we have a H l+1×Wl+1×T l+1 grid of
dl+1-dimensional capsules at layer l+1 where H l+1×Wl+1 is
the spatial dimension and T l+1 the number of capsule types.
Let P (h,w)

j be a parent capsule of type j ∈ {1 : T l+1} located
at (h, w) where h ∈ {1, ..., H l+1} and w ∈ {1, ..., Wl+1}. This
capsule receives information from a sub-grid of child capsules
of all types, confined in a user-defined kernel of size kl

h × kl
w.

This connection is illustrated in Fig. 3 where C(y,x)

1:T l is the
sub-grid of children capsules of all types centered at (h, w) and
y ∈ {(h− kh), ..., (h + kh)} and x ∈ {(w− kw), ..., (w+ kw)}.
Each parent capsule P (h,w)

j receives a prediction vector, û(y,x)
j |i

per child capsule type:

û(y,x)
j |i =Wi j × u(y,x)

i , ∀ i ∈ {1 : T l}, x, y (3)

where Wi j is the learned transformation matrix for type-i to
type- j capsules and u(y,x)

i the output of children capsules.
As noted, Wi j is defined for each capsule type and does not
depend on the spatial location. This is because it is shared
across locations (similar to convolutional filters) and scans
the whole capsule map. These transformation matrices are
learned during training by back-propagation. Having com-
puted the prediction vectors using eq. (3), the final input
to each parent capsule P (h,w)

j is the weighted sum over the
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predictions:
s(h,w)

j =
∑

i

c(y,x)
j û(y,x)

j |i , ∀ j = {1 : T l+1} (4)

which shows that only children capsules within the corre-
sponding kernel are routing to the parent capsule. Here, c(y,x)

j
is the routing coefficient of the child capsule positioned at
(x, y) (which does not depend on the child capsule type i
according to consistent voting mechanism explained below) to
its corresponding parent of type j . Finally, the parent capsules
activation is computed as:

v(h,w)
j = ||s(h,w)

j ||2
1+ ||s(h,w)

j ||2
s(h,w)

j

||s(h,w)
j ||

(5)

which is similar to eq. (2) with the s j in the fully-connected
capsule layer replaced by s(h,w)

j in the convolutional capsule
layer.

2) Consistent Voting: While each child capsule can freely
vote to a parent capsule, in [31] we proposed restraining
capsules to agree with capsules of other types at the same
spatial location.

ci j = ckj , ∀i, k ∈ S = {i, k | loc(i) = loc(k)} (6)

where loc() is the function converting a capsule index to its
pixel location and j is the index of the parent capsule to route
into. Intuitively, even though these capsules detect different
features from the input, they look at the same entity (due to
their same spatial location). Therefore, they should agree upon
what they see and vote to parent capsules accordingly. Our
experimental results show that incorporating this technique
significantly boosts the stability of the routing mechanism
performed in the convolutional capsule layers and improves
the overall network convergence.

These coefficients are determined by the dynamic routing
algorithm and computed as:

b(y,x)
j ← meani (b

(y,x)
i j + û(y,x)

j |i . v(h,w)
j ) (7)

c(y,x)
j = exp(b(y,x)

j )∑
j exp(b(y,x)

j )
(8)

where c(y,x)
j is the probability that the prediction vector û(y,x)

j |i
to be routed to the parent capsule P (h,w)

j .

C. Deep Capsule Network Architecture

Applying the ideas mentioned above allow us to make the
original capsule network deeper (with adding more convo-
lutional capsule layers) and solve the memory burden and
parameter explosion, thus makes the capsules work on large
images. The final structure of the deep capsule network used
in our cell classification task is presented in Fig. 4.

Similar to the original capsule network, this network con-
tains two main parts: encoder and decoder. The encoder
contains four layers. The first layer is a standard convolution
layer with 128 filters of size 5 × 5 and stride 2, followed
by ReLU activation. The next layer is a convolutional cap-
sule layer in which capsules are arranged in 8 channels
(i.e. 8 capsule types). Each capsule applies 16 convolutional
filters of size 5 × 5 and stride 2 to the whole input depth.

Fig. 4. Visual representation of the proposed deep capsule network
for classifying live vs. dead cells. Different colors show different capsule
types.

In this setting, all capsules in each of the 8 channels share
their weights with each other and each capsule outputs a
16-dimensional vector of activations. The third layer is another
convolutional capsule layer where each of its 16-dimensional
capsules receives information from only a 5 × 5 × 8 grid of
children capsules (locally-constrained routing). This is similar
to the local connection of neurons in a CNN. The last layer
is called CellCaps layer which has one 16D capsule per
class. Routing also takes place between these capsules and
all capsules in the previous layer, encoding the input into the
16D activation vector of instantiation parameters. The lengths
of these vectors are used to determine the predicted class.

Capsule network uses an additional reconstruction loss
as regularization to prevent over-fitting during learning the
network’s parameters [19]. This encourages the final capsules
to encode as much information from the input as possible.
The reconstruction is done by feeding 16D output of the final
capsules to a three-layer feed-forward neural network. Clearly,
given the larger input images, we need more neurons in the
feed-forward network to reconstruct the input. This means that
the required number of parameters also increases dramatically.
For example, for reconstructing a 51 × 51 input image out
of the two 16-dimensional CellCaps activations, we need 32,
1000, and 2601 (51×51) neurons, thus more than 2.6 million
parameters (weights and biases) to be trained which is very
large. To solve this, we propose using a convolutional decoder
to serve as the training regularization. We first mask the
16-dimensional activity vector of the wrong CellCap, then
reshape the activity vectors into two 4×4 feature maps which
are to be fed into the convolutional layers. Here, we used
four convolutional layers with 8, 16, 16, and 1 filters of
sizes 2, 3, 3, and 3 respectively. After each convolution,
the resulted maps are resized to double the size of the feature
maps. This structure has much fewer parameters (about 4K)
and significantly outperforms the feed-forward network in the
reconstruction task.

1) Loss Function: We used the margin loss proposed in [19]
to enforce the activation vector of the top-level capsule k (k ∈
{0, 1}) to have a large length if and only if the cell type (live
vs. dead) is present in the image. The total margin loss is the
sum of the losses for each CellCap and is computed as:

Lmargin =
∑

k

[
Tk max(0, m+ − ||vk||)2

+λ(1 − Tk) max(0, ||vk|| − m−)2
]

(9)
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where Tk = 1 iff a cell of class k is present, and m+ =
0.9, m− = 0.1, and λ = 0.5 as set in [19]. Sum of squared
differences between the input and reconstructed images is used
as the reconstruction loss and the total loss is computed as:

LTotal = Lmargin + αLreconstruction (10)

where α is set to 0.0005 to scale down the reconstruction loss
so that it does not dominate the margin loss during training.

D. Sequential Data With Temporal Constraints

Dealing with the classification of time-lapse image frames,
we must ideally consider the temporal dependencies between
individual frames. Ignoring such dependencies and treating
images as if they are independent yields noisy predictions.
In the case of our time-lapse data, there exist at most one
apoptosis event happening in a time-lapse sequence (i.e. a cell
death occurs in the sequential frames). Thus the prediction
should look like a step function in which the jump is the
apoptotic transition moment (programmed cell death) which
is irreversible; once a cell is dead, it will remain dead.

Given the time-lapse frames, we reformulate the
temporal-constrained apoptosis classification as a sequential
classification problem. There is a large number of methods
for classification of sequential data, among which Hidden
Markov Models (HMMs) [34], Conditional Random Fields
(CRFs) [35], and Recurrent Neural Networks (RNNs) are
the most popular ones. RNNs are equipped with an “internal
memory” that captures the information about what has been
seen so far. Long short-term memory (LSTM) [36] model is
introduced as a modification of RNN with a hidden memory
cell and dedicated gated logic. This makes LSTMs capable
of learning to keep, update, or forget the memory cell state
according to the context and incoming data. Moreover, unlike
the vanilla RNNs, LSTMs are capable of encoding long-term
dependencies.

Here, instead of feeding cell patches directly to LSTM,
we use the pre-trained networks (both CNN and CapsNet)
as feature extractors. However, instead of freezing their para-
meters, we let them get trained and fined-tuned along with
the LSTM parameters. Other than accuracy, model predictions
are also evaluated and compared according to the oscilla-
tions. We typically expect the predictions to look like a step
function (same as the ground truth) and do not fluctuate
much. This is quantified using the mean absolute ups and
downs error (MAUDE) metric. For a sequence i (sequence
of L frames), suppose yi and ŷi ∈ R

L are the vectors
of ground truth labels and model predictions respectively.
Function UD(.) : R

L → R is the function counting the
number of ups and downs (from 0 to 1 and vice versa) in
the sequence. Then the metric is defined as:

MAUDE = 1

N

N∑
i=1

|UD(yi )− UD(ŷi )| (11)

where N is the total number of test sequences used in the eval-
uation phase. We also compare the quality of model prediction
in terms of their accuracy in detecting the death time. This is

Fig. 5. Nanowell array demonstration and time-lapse microscopy
illustrating a CAR T-cell E1 killing a cancer cell T1 in one nanoliter well.
(B)-(D) showing the CAR T-cell started contacting the cancer cell; (E)-(I)
indicating that the cancer cell was killed as we can see clear lumenal
changes in cell nucleus pointed by black arrows. Scale bar: 25 µm.

measured by the mean absolute death-time error (MADTE)
computed as:

MADTE = 1

N

N∑
i=1

|DT (yi )−DT (ŷi )| (12)

where DT (.) : RL → R is the function that returns the death
time, i.e. index of the first frame labeled ‘1’.

IV. DATASET

A. Cell Culture and Imaging

Cell images in this work are derived from 4 datasets in
TIMING project. Specifically, CAR T-cells and NALM6 cell-
line cancer cells were labeled with fluorescent bio-markers
PKH67 and PKH26 respectively. CAR T-cells and cancer cells
are then loaded to nanowells at a concentration of 106 cells/mL
sequentially. The entire nanowells were immersed in the
media containing fluorochrome (AlexaFluor 647, Invitrogen)
conjugated Annexin V. The cell incubator was fixed at 37 ◦C
with 5% C O2. Cells were monitored in both phase contrast
and fluorescent modes using Carl Zeiss Observer Z1 fitted with
Hamamatsu sCMOS camera using a 20x 0.8 NA objective
for 6 hours at 5-min intervals. Fig. 5 depicts the structure
of a nanowell array and frames captured from a nanowell
demonstrating an apoptotic cell.

B. TIMING Pipeline and the Ground Truth

TIMING pipeline consists of a set of algorithms for nanow-
ell detection, cell segmentation and cell tracking, with which,
we are able to identify single-cell status at each time point.
For example, we cropped cell patches around their centers with
size 51×51 pixels. For the purpose of apoptosis classification,
we only cropped images in phase contrast and Annexin V
fluorescent channels. Instead of annotating each cell patch
manually by looking at its phase contrast or fluorescent
channels, we attained the binary labels (‘0’ for live and
‘1’ for dead) using simple threshold method. Note that the
Annexin V intensity threshold for apoptotic cells was generally
consistent in a certain dataset due to variations in imaging
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TABLE I
THE DEAD/LIVE CLASSIFICATION PERFORMANCE OF THE CLASSIFIERS

ON TEST DATA. WE PERFORMED 10-FOLD CROSS VALIDATION AND

REPORTED MEAN AND STANDARD DEVIATION OF THE

METRICS OVER ALL RUNS

conditions and fluorescent bio-marker concentrations across
different experiments, we chose different threshold values
for the 4 datasets before applying the threshold operation
for all. Labels of all the cell patches are not always clean
using simple threshold method. Multiple sources of annotation
errors do exist, such as incorrect calculation of ANNEXIN V
fluorescent intensity due to segmentation errors and spectral
leakage between fluorescent channels.

We collected 92,000 cancer cell patches of live and
apoptotic samples in total. For the sequential experiment,
9818 time-lapse sequences of cancer cell patches were col-
lected where each sequence contains 72 consecutive crops
from a delineated cell track. Performance is measured using
10-fold cross-validation where each train and test set is
selected from different nanowells to ensure independence.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Apoptosis Classification

The proposed capsule network is used for classifying live
and dead cells. We compared its performance with that of the
original capsule network proposed in [19], along with some of
the famous structures, namely AlexNet [21], ResNet-50 [22],
and DenseNet-BC [23]. These networks are modified to make
them compatible with our data and improve their performance.
All networks are trained using images of size 51× 51 pixels,
except the capsule network which was trained on the same
images down-sampled to 28×28 pixels. The final architectures
are the result of random search over hyper-parameters such as
filters’ sizes, number of channels, and dense/residual blocks.

For all networks, training is done using ADAM
optimizer [37] with an initial learning rate of 10−4 and
mini-batches of size 16. We annealed the learning rate
exponentially from its initial value to the minimum of 10−5

over the course of training. Cross-entropy loss function is
used for CNNs, while capsule networks are trained using
the margin-reconstruction loss combination. We perform
data augmentation by randomly rotating images around the
center of images with the maximum rotation degree of 180◦.
Afterward, pepper noise was added to the rotated images.
It is similar to applying dropout to the visible layer, i.e., the
input. The dropout rate is set to 5% and all the model
weights are initialized using Xavier initialization. Moreover,
L2-regularization and dropout technique are applied to all
weights and convolutional layers of the CNNs respectively to
ensure that no over-fitting happens.

Test prediction results for the live vs. dead cell classification
is presented in Table I for the various network architectures.

As can be seen, the proposed deep capsule network achieves
the best performance with almost one-third of parameters used
in DenseNet-BC. Using the techniques explained in Section 3
and adding convolutional capsule layers, we were not only able
to make the capsule network scale with larger input, but also
to get significant classification improvement from 87.2% for
the original capsule network (on input images of size 28×28)
to 88.6% with more than 10 times reduction of the parameters.

We also compared the classification performance of the
capsule networks with that of CNNs when fewer numbers of
training examples are available. Models are trained 10 times
on random subsets of the original training set and the average
prediction accuracies (± std.) over the same test set are
presented in the right panel of Fig. 6. It is observed that
capsule networks are more robust when less training samples
are available. Interestingly, while DenseNet performs better
than the original CapsNet when trained on the whole data
(88.0% compared with 87.2%), its prediction accuracy goes
below capsule network when using only 20% of the training
samples. The original and deeper proposed capsule networks
are performing more robust and achieving almost similar
performances when the number of samples is reduced to more
than 10%. This emphasizes the intrinsic robustness of the
capsule networks rooted in its viewpoint invariant matrix of
weights, meaning that even the poses of test sample’s parts
change by a large degree, capsule networks are capable of
getting back the pose of the whole object. This property
possibly accounts for the proposed capsule network’s ability to
generalize well with the smaller number of training samples.

B. Temporal Apoptosis Classification

As mentioned, we use LSTM to capture and encode the
temporal information from within the sequential time-lapse
apoptotic frames. However, instead of directly feeding the raw
image patches to LSTM, we use the models trained in the pre-
vious section as feature extractors. For the CNNs, the extracted
features are the 512 features of the last fully-connected layer
in AlexNet and the global average pooling layer in both
ResNet-50 and DenseNet-BC. Note that the structure of these
networks is modified to make them compatible with our
data. In capsule networks, the two 16-dimensional activation
vectors of the CellCaps are used as features. More importantly,
the feature extractor model parameters are not frozen but are
left free to get trained and fine-tuned along with the LSTM
parameters. According to our experiments, fine-tuning the
pre-trained models results in more informative features and
higher overall prediction accuracy compared with initializing
the model weights randomly.

Multiple variants of LSTMs were tested, including
stacked (multi-layer) and bi-directional LSTMs, and the
best performing models with the optimal configurations are
reported in Table II. In the table, the frame-based accuracy
is simply the percentages of images classified correctly and
the sequence-based accuracy is computed on the single label
generated for each sequence. To make the sequence label,
we define a mapping from the frame labels to the sequence
label which assigns one binary label to each movie sequence
indicating live (label ‘0’) or dead (label ‘1’). According to
this mapping, a sequence is labeled dead or apoptotic (‘1’) if
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Fig. 6. Classification performance of various networks on the test data. Left: precision-recall curves for the networks trained on the whole training
set. The points on the curves show the precision and recall values at the default threshold of 0.5. Right: prediction accuracy of models trained
on different numbers of training samples. Training is conducted 10 times on random subsets of the training set, and the mean prediction accuracy
(± std.) is reported.

TABLE II
TEST PREDICTION PERFORMANCE RESULTS FOR THE DEAD/LIVE CLASSIFICATION OF SEQUENTIAL APOPTOSIS DATA. EVALUATION IS
CONDUCTED USING 10-FOLD CROSS VALIDATION AND AVERAGE (±STD.) OVER THE RUNS IS REPORTED FOR EACH OF THE METRICS

it contains either 5 consecutive dead frames or one-fifth of the
frames are labeled dead. Otherwise, it is labeled live (‘0’).

Experimental results indicate that the best performances are
achieved using bi-directional LSTMs. However, it should be
noted that bi-directional LSTMs are not causal and do not
fit in the real-time classification systems as they need the
whole sequence for making the inference. Capsule networks
achieve the highest prediction performance with our proposed
deep CapsNet model achieving 93.8% and 93.9% frame
and sequence-based accuracies respectively. More importantly,
CapsNets achieve such high prediction performances using a
simple recurrent model with only one hidden layer and much
fewer hidden units. This points out that the very few features
extracted from CapsNets (32 features; 16 per Cell Capsule) are
rich and informative enough to make an accurate inference.
This is partially enforced by using the reconstruction network
which reconstructs the whole input image out of these vectors.

Fig. 7 depicts the predictions for thirty sequences sampled
randomly from the test data. The top left panel shows that
the ground truth labels also contain some level of noise
(labels changing from ‘dead’ to ‘live’) which is due to the
thresholding method used for generating labels out of the
death marker intensity curve (see Section IV). While DenseNet
and CapsNet (with no recurrent structure stacked) achieve
88.0% and 88.6% prediction accuracies, stacking the recurrent
networks improves the performance up to 93.3% and 93.8%.
Incorporating a recurrent structure not only improves the pre-
diction accuracy but also significantly reduces the fluctuations
in the sequential predictions. It also helps to predict the
cell death time more accurately. This is quantified using the
MAUDE and MADTE metrics respectively whose values are
presented in Table II for all models. While networks with

no recurrence make unstable predictions (MAUDE of 9.82
and 7.11 for DenseNet and CapsNet respectively), stacking
the recurrent model and end-to-end fine-tuning reduces the
fluctuations with the MAUDE value decreasing to 0.80.

C. Visual Explanations of Deep Networks Inference

While the results support the superior prediction perfor-
mance of capsule network, it is still unclear How they predict
what they predict. Finding an explanation for the way these
models make inferences helps to build trust in intelligent
systems and to identify their failure mode. In the cases that
AI works significantly better than humans, the goal of model
transparency is machine teaching- i.e. a machine teaching a
human how to make better decisions.

Grad-CAM [38] is a technique for providing such visual
explanation of the CNN decisions. It uses the gradient of
the predicted class to produce a localization heat-map high-
lighting the image regions that are most important in making
a prediction. We adapted Grad-CAM to our trained deep
CapsNet by flowing the gradient from the target output capsule
(in CellCaps layer) into the 7 × 7 SecondaryCaps layer to
understand the importance of each capsule for a decision of
interest. The same method is applied to the last 6× 6 layer of
the DenseNet for comparison as depicted in Fig. 8.

As depicted in Fig. 8, CapsNet detects the whole cell and
makes prediction according to the cell edges and body texture
while CNN’s region of interest is bounded to confined regions
mostly around the cell edges. This is due to the routing mech-
anism employed in CapsNet which lets lower-level capsules
(those capturing relevant information) to agree and consis-
tently route information to higher-level capsules which can
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Fig. 7. Illustrating the sequential classification results on samples from test data. Top: the ground truth labels and deep networks predictions for
30 sequences (selected randomly) each of length 72 frames. CapsNet+BiLSTM gives the most accurate and stable prediction outputs compared
to other structures. Bottom: some of the frames of three example apoptotic sequences (marked with dashed lines on the top panel) and their
associated prediction. The four squares at the bottom of each frame shows (from left to right) the ground truth, DenseNet, DenseNet+BiLSTM, and
CapsNet+BiLSTM predictions respectively.

Fig. 8. Visualizing sample images (top) and their corresponding Grad-CAM localization of the region of interest for DenseNet (middle) and CapsNet
(bottom).

more effectively process it. It is superior to the max-pooling
operation used in the CNNs which only attends to the most
active neuron in the pool and ignores the rest. Although the
CNN’s localized region of interest observed to be sufficient
for making inference in simpler cases (a-d), it failed in more
complex scenarios. Examples are a cell with irregular shape
mimicking the appearance of the other class (e), or existence
of other objects such as effector cells or nanowell wall (f-k)
which sometimes distracts the model. This happens because
CNNs are unable to identify the position of one object
relative to another. CapsNet, however, encodes the relative
orientation and position of components, thus performs better in
crowded scenes. Capsnet’s failure cases were observed when
the distraction is more severe (l-n). This is inevitable as we
only labeled the cancer cells. Due to CapsNet’s natural ability
to detect multiple objects at once (as experimented in [19]),
labeling the T-cells (effectors) along with the cancer cells
and detecting both could potentially address this shortcoming.
We observe that both CNN and CapsNet fail more often
during the live-to-dead transition periods. This is understand-
able given the high visual uncertainty corresponding to these
instances. An example is shown in Fig. 7. (seq. #2), where
DenseNet+BiLSTM model completely misses the death time
(detects it at t = 24), while CapsNet+BiLSTM does fairly
better and detects it at t = 16.

D. Scaling to Large Images

In principle, the proposed CapsNet can work with large
images or volumetric data similar to CNNs. Converting from

CNNs to CapsNets can be done by replacing the last few con-
volutional and fully-connected layers of a regular CNN with
the proposed convolutional and fully-connected capsule layers,
respectively. Dynamic routing mechanism is the computa-
tional and memory bottleneck of the original CapsNet [19].
However, the proposed convolutional dynamic routing signif-
icantly mitigates this computational issue by allowing only
child capsules within a user-defined kernel, instead of all
child capsules, to route information to parent capsules. The
proposed architecture also reduces the memory footprint of
CapsNet by sharing the transformation matrices Wi j among
capsules of the same type. As an illustration, for CT scans of
512 × 512 × 256 voxels, the proposed CapsNet has around
16.2 million parameters compared to 22.7 million parameters
of a 3D ResNet with 50 layers.

E. Clinical Significance

Consistent with prior studies on tracking of individual cells
within series of timelapse images, an accuracy of classification
of least 90 − 95% in any single image is essential for the
biological user to accept the automated results without the
need for manual proof-reading and editing [7], [39] . Unlike
Annexin V based staining (accuracy of >99%) for the detec-
tion of apoptosis, classification of apoptosis based on only
the phase images is more challenging and the routine expert
based classification accuracy is ∼ 95%. As we have illustrated
with our results in Table II), the accuracy is greatly enhanced,
from 88.6% to 93.9%, by taking advantage of the time-lapse
data on the same cell. Since the accuracy is close to that of
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a routine expert, we expect the proposed apoptosis classifier
to have high clinical significance. In addition, the ability to
generalize well with fewer training examples make CapsNets
an appealing choice for the clinical domains.

VI. CONCLUSION

Our work shows that CapsNet is a promising alternative
to CNN. Experimental results demonstrate that CapsNets
compare favorably to CNNs when the training size is large,
but significantly outperform CNNs on small size datasets.
This is especially helpful when the system must learn from
small amounts of data, which is often the case in medical
settings where data collection is either expensive (due to
the requirement of highly-trained experts), or time-consuming
(due to the multiple repetitions of an experiment). We showed
that by modifying the routing mechanism and stacking a
recurrent structure, we can reduce the number of trainable
parameters more than 10 times while enhancing the prediction
accuracy and stability at the same time. Future work will
explore unsupervised methods for training capsule networks,
as well as the possibility of employing the proposed capsule
network in transfer learning and one-shot learning tasks.
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