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Abstract

Motivation: Automated profiling of cell–cell interactions from high-throughput time-lapse imaging

microscopy data of cells in nanowell grids (TIMING) has led to fundamental insights into cell–cell

interactions in immunotherapy. This application note aims to enable widespread adoption of

TIMING by (i) enabling the computations to occur on a desktop computer with a graphical process-

ing unit instead of a server; (ii) enabling image acquisition and analysis to occur in the laboratory

avoiding network data transfers to/from a server and (iii) providing a comprehensive graphical

user interface.

Results: On a desktop computer, TIMING 2.0 takes 5 s/block/image frame, four times faster than

our previous method on the same computer, and twice as fast as our previous method (TIMING)

running on a Dell PowerEdge server. The cell segmentation accuracy (f-number = 0.993) is superior

to our previous method (f-number¼ 0.821). A graphical user interface provides the ability to inspect

the video analysis results, make corrective edits efficiently (one-click editing of an entire nanowell

video sequence in 5–10 s) and display a summary of the cell killing efficacy measurements.

Availability and implementation: Open source Python software (GPL v3 license), instruction man-

ual, sample data and sample results are included with the Supplement (https://github.com/

RoysamLab/TIMING2).

Contact: nvaradar@central.uh.edu or broysam@central.uh.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Nanowell grids are a broadly applicable, and a very practical meth-

odology for recording dynamic cell–cell interactions in vitro since

they: permit continuous tracking of the same cell groups without the

common disruptions, e.g. cells that exit or enter the field of view of

the microscope (Merouane et al., 2015) (Supplementary Fig. S1).

They provide the massive throughput needed for extensive statistical

sampling. Importantly, when the image analysis reveals cells of
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special interest, their coordinates are known precisely enough to en-

able robotic retrieval for downstream processing like clonal expan-

sion or PCR. In the context of cancer immunotherapy, this method

allows monitoring of effector-mediated cytotoxicity against desired

target cells without the need for target cell engineering. This pro-

vides important advantages, such as the ability to use autologous or

matched/primary tumor cells as target cells.

To date, given our interests, these methodologies have been

applied to investigations of dynamic interactions between immune

cells (e.g. T cells and NK cells) and target cells (e.g. leukemia and

melanoma cancer cells) (Supplementary Table ST1). However, the

method is broadly applicable to high-throughput quantitative stud-

ies of dynamic cell–cell interactions in general immunology, cellular

biomanufacturing, cancer biology, differentiation, stem cell engin-

eering, screening drugs based on interactions between different cell

types within blood (Supplementary Table ST2).

Although advances in microfabrication have made the use of

nanowell grids routine for most laboratories, the ability to perform

quantitative analysis of the resulting data, at scale, in a timely man-

ner, in the laboratory has remained an obstacle. The proposed tools

are aimed at eliminating this obstacle, and enabling high-throughput

single-cell analyses of dynamic cell–cell interactions for a broader

range of applications in cell biology.

2 Materials and methods

A typical time-lapse imaging microscopy data of cells in nanowell

grids (TIMING) experiment generates an array of multi-channel vid-

eos of 10–200 000 nanowells sampled 2–10 min apart, representing

1–2 TB of data. The proposed software (named TIMING 2.0) per-

forms large-scale automated video array analysis. It provides a fast

‘turnkey’ solution with an efficient user interface that generates quan-

titative analyses of cell interaction behaviors at single-cell resolution

with high yield, automation, speed and accuracy, with efficient visual

confirmation. It builds on our prior work (Merouane et al., 2015)

that overcame the all-important yield barrier, i.e. the ability to seg-

ment and track a large percentage of nanowells with sufficient accur-

acy that manual proofreading is no longer needed. It used

segmentation and tracking algorithms that exploited the nanowell

spatial confinement to achieve >98% cell detection, segmentation

and tracking accuracies, that are unattainable directly. The system ran

on a centralized server, and required time-consuming data transfers

to/from the server. TIMING 2.0 improves upon TIMING with a

faster implementation that also avoids network transfers and allows

all computations to occur on a desktop system with a graphical proc-

essing unit (GPU). It automatically counts the cells in each nanowell,

identifies their types based on cell-type markers and provides dynamic

measurements of size, location, shape and movements of cells; fre-

quencies and durations of cell–cell contacts, and changes in fluores-

cent markers of cellular events. It enables linked visualization, and

analysis of these measurements, with fast editing capabilities. In order

to enable downstream statistical profiling and hypothesis testing, the

data from our software can be exported in the form of spreadsheets.

TIMING 2.0 incorporates the following key improvements:

2.1 Faster cell segmentation
The computationally intensive cell segmentation algorithms of

TIMING were replaced by a fast iterative voting algorithm imple-

mented on the GPU of desktop computers (Saadatifard et al., 2018).

The peak of the histogram of detected cell counts indicates the cor-

rect count for each video sequence, and when its value exceeds

80%, we use the corresponding count as the correct estimate. We

identify frames with other cell counts, and re-segment them using

the correct number of seeds (Supplementary Fig. S2).

2.2 Fast semi-automated proofreading
We developed a fast method for correcting segmentation and/or

tracking errors in nanowell videos that arise due to errors in cell

count estimation (most common cause). When an error is detected,

the correct (visually assessed) cell count is entered manually, and the

segmentation and tracking algorithms are rerun for just the affected

nanowell. This procedure is illustrated in Supplementary Figure S3.

2.3 Graphical user interface (GUI)
The comprehensive TIMING 2.0 GUI (Supplementary Fig. S4) delin-

eates nanowells, counts cells, identifies their types based on cell-type

markers, and provides dynamic measurements of cell size, location,

shape and movements, frequencies and durations of cell–cell contacts

and fluorescent markers of cellular events. It allows selective visualiza-

tion of nanowells based on chosen criteria (e.g. time of cell death, or

time of first cell contact), efficient editing of segmentation and track-

ing results and profiling of cell interaction behaviors. The data can be

exported to spreadsheets for further analysis.

3 Results and performance

For the example TIMING dataset in Supplementary Figure S1, CD19-

specific CARþ (designated 19–28 z) human T cells were generated, as

described previously (Liadi et al., 2015); 19–28 z T cells as effectors,

and NALM-6 (CD19þ) tumor cells as targets, were sequentially onto

a nanowell array, and the kinetics of killing was monitored using

TIMING. In order to test if the use of either animal derived serum

[fetal bovine serum (FBS)] or autologous human serum (HS) had an

impact on the killing of 19–28 z T cells, we ran parallel arrays con-

taining either 10% FBS or 10% HS. As illustrated in Supplementary

Figure S1(E), there was no appreciable difference in the frequency of

T cell mediated killing under the conditions tested.

We measured the main drivers of software performance: (i) speed

of automated image analysis; (ii) the segmentation accuracy and (iii)

effectiveness of the graphical user interface, with a focus on the

speed of making corrective edits to video sequences, as described

below.

3.1 Analysis speed
Our original implementation on a Dell 910 PowerEdge server took

�10 s/block/frame, with each block representing a 6 � 6 array of

nanowells. On a desktop system (Intel XEON E5-1630 CPU,

NVIDIA GTX 1080, 64GB DDR3 RAM, 1TB 7, 200RPM disk),

TIMING 2.0 takes �5 s/block/frame, while also avoiding network

data transfer times, while the original TIMING code takes �20s/

block/frame plus (variable) data transfer times.

3.2 Segmentation accuracy
The precision-recall curves in Supplementary Figure S2(H) show

that the radial voting-based algorithm with the confinement con-

straint (blue) has an f-number of 0.993, which is more accurate than

the previously published method with an f-number of 0.821.

3.3 Semi-automatic editing
In our validation experiments, 73% of nanowell videos containing

one or more segmentation and tracking errors could be completely

corrected using the fast semi-automated proofreading method,
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taking 5–8 s per nanowell video, much faster than frame-by-frame

inspection and editing.

4 Documentation

TIMING 2.0 is written in Python—one of the most widely used lan-

guage for scientific computing, and it runs on most computers

(Windows, OS X and Linux). The installation on most computers

requires only one command line using the widely used Conda envir-

onment. It is provided in open source form to allow non-commercial

peer modification and extension. Complete documentation is pro-

vided in the supplementary Material and at the Github site noted in

the abstract.
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