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Abstract 

Extracellular vesicles (EVs) regulate the tumor microenvironment by facilitating transport of 

biomolecular cargo including RNA, protein, and metabolites. The biological effects of EV-

mediated transport have been studied using supra-physiological concentrations of EVs, but the 

cells that are responsible for EV secretion and the mechanisms that support EV secretion are not 

well characterized. We developed an integrated method based on arrays of nanowells to identify 

individual cells with differences in EV secretion and used an automated robot to perform linked 

single-cell RNA-sequencing on cloned single cells from the metastatic breast cancer cell line, 

MDAMB231. Gene expression profiles of clonal cells with differences in EV secretion were 

analyzed, and a four-gene signature of breast cancer EV secretion was identified: HSP90AA1, 

HSPH1, EIF5, and DIAPH3. We functionally validated this gene signature by testing it across 

different cell lines with different metastatic potential demonstrating that the signature correlated 

with levels of EV secretion. Analysis of the TCGA and METABRIC datasets showed that this 

signature is associated with poor survival, more invasive breast cancer types, and reduced CD8+ T 

cell infiltration in human tumors. We anticipate that our method for directly identifying the 

molecular determinants of EV secretion will have broad applications across cell types and diseases. 
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Introduction 

Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayers that 

encapsulate and transport diverse biological cargo including nucleic acids and proteins1,2. EVs 

appear to be secreted from diverse mammalian cell types and are hypothesized to mediate long-

range cell-cell communication3,4,5. In the last two decades, it has become evident that EV-mediated 

transport and delivery of biomolecules is important not only in normal physiological processes 

but also in pathological processes including cardiovascular disorders and cancers6. EVs influence 

every step of tumor progression and metastasis. Tumor-derived EVs induce upregulation of 

angiogenesis-related genes and enhance endothelial cell proliferation7, facilitate 

immunosuppression through the transfer of PD-L18, enable invasion through the activity of the 

matrix metallopeptidase 2 (MMP2)9, and seed the pre-metastatic niche by downregulating 

expression of cadherin-17 in lung10. Tumor-derived EVs have potential for diagnostic purposes, 

and methods have been developed to dissect the heterogeneity of EVs down to the single 

particle-level11,12,13.  

The pathways that regulate the secretion and packaging of EVs are not completely 

understood14. EVs are classified based on their mode of release as ectosomes or exosomes. 

Ectosomes, or shedding microvesicles, are released through the outward budding of the plasma 

membrane. Exosomes, by contrast, are synthesized by the inward budding of the endosomal 

membrane, which leads to formation of early endosomes. The maturation of early endosomes 

results in the formation of multivesicular bodies (MVB), and the fusion of the MVBs with the 

plasma membrane leads to secretion of exosomes. Proteins associated with MVB sorting include 

components of the ESCRT complex15,16; and ESCRT-independent molecules such as sphingolipid 
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ceramide17 and tetraspanin CD6318. Proteins associated with the fusion of MVBs with the plasma 

membrane include the SNAREs19,20 and the RAB family members RAB27A, RAB27B, and RAB721,22. 

Despite this progress, the map of proteins that participate in EV secretion remains incomplete. 

Most studies have focused on profiling the cargo of EVs, but this profiling largely reflects 

information being transferred rather than the molecules responsible for EV secretion23,24.  

To directly link secretion of EVs with underlying molecular properties at single-cell 

resolution, we integrated single-cell EV profiling and cloning with single-cell RNA sequencing 

(scRNA-seq) to enable unbiased discovery of the genes that influence EV secretion. We utilized 

the well-validated metastatic breast cell line, MDAMB2321, which has been known to secrete EVs 

that enhance migration and invasion of cancer cells25. By performing scRNA-seq analysis on 

individual cells that either secrete high or low amounts of EVs, we discovered a four-gene 

signature, HSP90AA1, HSPH1, EIF5, and DIAPH3, correlated with EV secretion. We experimentally 

validated this core signature in breast cell lines in vitro and confirmed that HSP90 inhibitors 

negatively regulate EV secretion. Based on analysis of the Cancer Genome Atlas (TCGA), high 

expression of the EV signature is strongly correlated with poor survival and low CD8+ T cell 

infiltration in breast cancer patients.  
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Results 

Establishing monoclonal cell lines with heterogenous EV secretion. 

To directly analyze EV secretion by clonal cells, we utilized nanowell arrays26. We mapped 

the heterogeneity in EV secretion within the metastatic triple-negative breast cancer cell line, 

MDAMB231, with the aid of two EV markers known to be expressed in these cells, CD63 and CD81 

(Figure 1A). Single-cell profiling demonstrated that individual cells secrete very different amounts 

of EVs (Figure 1B)27. To determine whether or not EV secretion is a stably inheritable property, we 

retrieved individual EV secretor (labeled MDAMB231-S) and non-secretor cells (MDAMB231-NS) 

using an automated robot and expanded them to establish clonal populations. After limited 

expansion (<20 generations), we evaluated secretion rate by single cells from these clonal 

populations and confirmed that individual cells from the MDAMB231-S population secreted more 

EVs than MDAMB231-NS cells at all time points tested (Figure 1C). Tracking the kinetics of EV 

secretion showed that the majority (>87%) of both MDAMB231-S and MDAMB231-NS cells 

secreted EVs continuously over the 6 hour period monitored (Figure 1D). Since EV secretion is 

associated with increased migration in metastatic breast cancer cells28, we compared the 

migratory potentials of MDAMB231-S and MDAMB231-NS populations using a wound healing 

assay. The MDAMB231-S cells were significantly more migratory than were the MDAMB231-NS 

cells (Figure 1E). Taken together, these results showed that we can identify cells with differences 

in EV secretion and that the EV secretion property is maintained upon clonal expansion.  

Identification of an EV gene signature in breast cancer cells 

The availability of the clonal populations allowed us to compare the transcriptional 

differences across thousands of single cells by scRNA-seq. To derive a genetic signature 
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associated with EV secretion, we performed scRNA-seq on cells from the MDAMB231-S and 

MDAMB231-NS populations using the Rhapsody platform (Figure 2A). After data processing and 

filtering, we identified 1970 single cells with an average of 4710 unique genes and 24,219 

transcripts per cell (Figure S1A). Dimensionality reduction showed a clear separation between the 

two cell types (Figure S1B); two clusters one consisting exclusively of secretor cells and one of 

non-secretor cells, were identified (Figure 2B). Differential gene expression analysis identified 322 

genes were significantly enriched in the MDAMB231-S cells compared to MDAMB231-NS cells 

(adjusted p < 0.05; Table S1). We compared the differentially expressed genes (DEGs) to those 

previously associated with EV secretion29,30,31. Of the 322 DEGs we identified, 211 were annotated 

in the ExoCarta database as associated with EVs (Figure 2C, Table S2). When restricted to DEGs 

with greater than 1.2-fold difference between MDAMB231-S and MDAMB231-NS cells, we 

identified 34 genes known to be associated with EV secretion, metastasis and invasion (Figure 

2D, E, Table S3). We classified the DEGs into genes that encode cell-adhesion/migration-related 

proteins (e.g., ACTN1, CAV1, FXYD5, and DIAPH3), transcriptional regulators (e.g., GTF3A, TFDP1, 

and SNAPC1), and chaperones and heat shock proteins (e.g., HSP90AA1, HSPH1, and POMP). Of 

these DEGs, UBL3 encodes a protein that directly interacts with CD63 and functions as a key post-

translational modifier that facilitates the sorting of proteins into EVs32.  

 We posited that the genes associated with EV secretion or packaging within the EVs are 

regulated in a coordinated manner. Accordingly, we calculated the Spearman coefficient between 

the DEGs and applied a hierarchical clustering to identify the cluster of genes that were 

significantly correlated with each other. By applying a multiscale bootstrap resampling method, 

we that HSP90AA1 was significantly correlated with HSPH1, EIF5, and DIAPH3 (Figure 2F, G). We 
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refer to these four genes as EV-sig genes. The mRNAs encoded by each of these four genes were 

significantly correlated with the levels of EV marker CD81 mRNA (Figure 2H). The proteins 

encoded by each of these genes have been individually shown to be associated with actin 

remodeling and EV secretion. HSP90AA1 encodes HSP90, a molecular chaperone that promotes 

structural maintenance of proteins involved in cell cycle control and signal transduction. HSPH1 

encodes a member of the heat shock protein 70 family of proteins that acts as a nucleotide 

exchange factor for molecular chaperones and is capable of direct protein-protein interaction with 

HSP9033. DIAPH3 encodes a member of the diaphanous subfamily. DIAPH3 is involved in actin 

remodeling and regulation of the cell motility and adhesion and can activate the beta-catenin/TCF 

signaling by binding to HSP90, which results in growth, migration, epithelial-mesenchymal 

transition, and metastasis in hepatocellular carcinoma cells34. EIF5 encodes the eukaryotic 

translation initiation factor eIF5, which is enriched in EVs secreted from breast cancer cells and 

melanoma cells35.  

 To directly demonstrate a role for the EV-sig genes in EV secretion, we focused on HSP90 

for three reasons: First, HSP90 interacts directly with both DIAPH3 and HSPH133,34. Second, 

independent proteomic analyses of breast cancer cells showed that EVs contain both HSP90 and 

EIF5A32. Third, inhibitors of HSP90 are readily available, allowing us to study how inhibition of 

HSP90 impacts EV secretion from MDAMB231 cells. We used a standard transwell assay to capture 

the EVs secreted from MDAMB231 cells incubated with either tanespimycin (also known as 

17AAG), a first generation HSP90 inhibitor, or ganetespib (also known as STA-9090), a potent, 

synthetic resorcinol-based HSP90 inhibitor (Figure S2A). The inhibition of HSP90 significantly 

reduced EV secretion in a dose-dependent manner even at nanomolar concentrations (Figure 
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S2B). This observation further supports our hypothesis that EV-sig gene expression is a 

determinant of EV secretion. 

EV-sig is predictive of EV secretion in breast cancer cell lines  

To validate whether EV-sig can predict the secretion of EVs, we investigated three breast 

cancer cell lines, MDAMB231, MCF7, and HCC70, which have differences in metastatic potential. 

MDAMB231 and HCC70 cell lines were established from triple-negative breast cancers, whereas 

the MCF7 line is an estrogen receptor- and progesterone receptor-positive cancer cell line36. The 

wound healing assay confirmed that the migration potential of MDAMB231 cells is significantly 

higher than those of MCF7 and HCC70 cells (Figure 3A). We performed scRNA-seq on 

MDAMB231, MCF7, and HCC70 cells. We obtained an average of 4459 unique genes and 22,071 

transcripts per cell (Figure S3A). After dimensionality reduction, the cells from each of the three 

cell lines clustered separately (Figure 3B), and a total of 2634 DEGs (> 1.2-fold change) were 

identified (Table S4). 

To validate the phenotype of the cancer cell lines in the scRNA-seq data, we compared the 

expression of DEGs with known markers for breast cancer subtypes including luminal, basal A, and 

basal B36. This analysis showed that markers for luminal (e.g., GATA3, FOXA1, KRT18, and KRT19), 

basal A (e.g., SLPI, KRT16, and KRT6B), and basal B (e.g., AXL, CAV1, VIM, and SEPRINE1) subtype 

were upregulated in MCF7, HCC70, and MDAMB231 cells, respectively (Figure 3C). Similarly, 

pathway analysis confirmed that MDAMB231 and MCF7 cells are enriched for genes enriched in 

pathways corresponding to basal and luminal phenotypes, respectively (Figure 3D). Consistent 

with the fact that the HCC70 line was derived from a primary tumor, pathway analysis showed 
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lower scores for metastatic and epithelial-mesenchymal transition pathways in HCC70 cells 

compared to the MDAMB231 and MCF7 cells (Figure 3E). 

Next, we compared the average expression of EV-sig genes: HCC70 cells had the lowest 

expression, MCF7 cells had intermediate expression, and MDAMB231 cells had the highest 

expression (Figure 4A). Consistent with this observation, the Spearman correlation between the 

genes of the signature showed a significant correlation in the MDAMB231 cells; correlations were 

smaller in MCF7 and HCC70 cells (Figure 4B). At the protein level, we confirmed that all three cell 

lines expressed the HSP90 protein (Figure S3B). As an independent method to track the 

abundance of the EVs, we compared the levels of CD63 and CD81 mRNAs within the scRNA-seq 

data of these cell lines. All three lines expressed CD63; MDAMB231 and MCF7 cells expressed 

considerably higher levels of CD81 mRNA than did HCC70 cells (Figure 4C, S3C).  

We then utilized our single-cell assay to directly profile EV secretion from each of these 

three cell lines. As predicted by EV-sig, HCC70 cells secreted low amounts of EVs, MCF7 cells 

secreted intermediate levels, and MDAMB231 cells secreted high levels (Figure 4D). We also 

independently validated these results using the standard transwell assay (Figure S2A), and these 

results confirmed that HCC70 cells secreted fewer EVs than did MDAMB231 cells (Figure 4E, S4). 

We tracked the short-term kinetics of EV secretion, and at all the timepoints tested, individual 

MDAMB231 cells showed higher EV secretion than did single MCF7 cells (Figure 4F). Lastly, we 

tested the impact of HSP90 inhibitors demonstrating that both tanespimycin and ganetespib 

inhibited EV secretion from MCF7 cells (Figure S2). In summary, scRNA-seq and EV profiling 

results showed that more migratory cells secrete more EVs than do less migratory cells and that 

EV-sig can predict cells amount of EV secretion. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.13.503860doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.13.503860


 

11 

 To generalize the value of EV-sig, we obtained gene expression data on 1304 cell lines 

available in the Broad Institute Cancer Cell Line Encyclopedia (CCLE). Within this expanded dataset, 

expression of the EV-sig genes was highly correlated (Figure S5A). Focusing specifically on breast 

cancer, EV-sig showed highest expression in basal B phenotypes, followed by basal A, then HER2-

enriched, and then luminal (Figure S5B). This is consistent with the known aggressiveness of these 

subtypes of breast cancer.  

EV-sig correlates with breast cancer outcomes  

To investigate the translational value of EV-sig, we took advantage of the breast cancer 

datasets available in TCGA and METABRIC. We interrogated combined transcriptomic and 

clinical/pathological annotations for 1093 and 809 patients with breast cancer in TCGA and 

METABRIC, respectively. We first confirmed that the four genes that comprise EV-sig are 

significantly correlated with each other within human breast cancers (Figure 5A, S6A). We then 

stratified the patients into two groups: those with high EV-sig expression (BRCA_EVHi and 

MET_EVHi) and those with low EV-sig expression (BRCA_EVLo and MET_EVLo). The overall survival of 

patients with EVHi tumors was significantly lower than patients with EVLo tumors. For patients with 

data in TCGA, the median survival for patients with EVHi was 7.5 years, whereas those with EVLo the 

median survival was 10.8 years (HR: 2.3, 95% CI: 1.53-3.45); for patients with data in METABRIC, 

the median survival was 49.4 months for patients with EVHi and 63.6 months for EVLo (HR: 1.2, 95% 

CI: 1.03-1.40) (Figure 5B, S6B). Quantification of the pathology of the disease showed that EV-sig 

was associated with increased tumor size and more advanced disease (Figure 5C-D, S6C). 

We next evaluated whether EV-sig could be used to stratify the different molecular 

subtypes of breast cancers. The tumors with low levels of EV-sig expression were enriched in 
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normal-like and luminal breast cancers, whereas tumors with high levels of EV-sig expression were 

enriched in basal breast cancers (Figure 5E, S6D). Gene set enrichment analysis (GSEA) specifically 

focused on pathways associated with tumor cell functions showed that tumors with high levels of 

EV-sig expression are enriched in pathways associated with invasiveness, metastasis, and epithelial 

to mesenchymal transition (Figure 5F, S6E). Taken together, the clinicopathological data are 

consistent with our in vitro observation that EV secretion is associated with increased 

aggressiveness and invasion of tumor cells. 

To evaluate the nature and frequency of immune cell infiltration associated with higher 

expression of EV-sig genes, we quantified the relative frequencies of the 22 different immune cell 

types by evaluation of normalized gene expression data using the CIBERSORTx algorithm. Tumors 

classified as EVLo had an increased frequency of CD8+ T cells, increased cytolytic activity (associated 

with increased expression of both PRF1 and GZMA), and increased frequency of TBX21 expression 

in comparison to EVHi tumors (Figure 5G-I, S6F). Collectively, these results suggest that increased 

EV secretion by cancer cells is associated with decreased CD8+ T cell infiltration and that this in 

turn promotes growth of larger and more aggressive tumors. 
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Discussion 

EVs secreted by cancer cells have potential to serve as diagnostic markers, and EVs could 

be used for delivery of anticancer agents into tumors37,38,39. Techniques based on analysis of bulk 

cells have enabled classification of EVs, characterization of the cargoes of EVs, and investigation 

of the impact of EVs on the progression of tumors40. At the other end of the spectrum, single-

vesicle profiling studies have revealed the heterogeneity of both surface markers and the internal 

cargo of EVs41,42,43,44. In the past few years, single-cell methods to map the heterogeneity in EV 

secretion across single cells have been developed45,46,47. We recently reported a method to profile 

secretion of EVs from single cancer cells using nanowell arrays26 and here used this methodology 

to perform integrated profiling of the EV secretion and the transcriptional signature of EV-

secreting cancer cells. 

By profiling of populations of metastatic MDAMB231 breast cancer cells with differences 

in EV secretion, we identified several transcripts that are differentially expressed in cells that do 

and do not secrete EVs. Several were previously shown to play key roles in the biogenesis and 

secretion of EVs. CAV1 encodes a protein that blocks the fusion of MVBs with autophagosomes48. 

EVs containing CAV1 have been shown to enhance the proliferation and invasion of metastatic 

cells49. UBL3 encodes a protein that was shown to enhance the sorting of cargo into EVs by 

functioning as a post-translational modification factor32. The majority of the proteins encoded by 

our DEGs were shown to interact UBL3 in MDAMB231 cells by unbiased proteomics, suggesting 

the importance of UBL3-mediated sorting of protein cargo into EVs32. Although initial studies 

suggested that the C-terminal CAAX motif, which is CVIL in UBL3, is important for membrane 
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localization and substrate modification, how UBL3 identifies substrate proteins and mediates the 

transport of these proteins into EVs are not known.  

Based on EV secretion analysis and scRNA-seq data from MDAMB231 cells, we derived a 

transcriptional signature of EV secretion, based on four genes, HSP90AA1, HSPH1, EIF5, and 

DIAPH3. The levels of these genes are strongly correlated in cancer cell lines. We validated this 

signature by utilizing EV-sig to predict the EV secretion propensities of breast cancer cell lines and 

by inhibiting the activity of HSP90 in vitro and confirming that inhibition of HSP90 activity reduces 

EV secretion. We further demonstrated that expression of EV-sig genes is associated with 

aggressiveness of 1304 cell lines available in CCLE. The abundance of HSP90 in cancer EVs has 

been extensively documented, and it was recently shown that HSP90 is expressed in the EVs of 

more than 80% of cancer cell lines50. HSP90 is a pivotal regulator of proteostasis in cancer cells 

due to the high stress burden of these cells. In addition to its role as a chaperone, HSP90 also 

mediates the fusion of MVBs with the plasma membrane in yeast cells directly leading to secretion 

of EVs51. Somewhat surprisingly, tanespimycin, which traps HSP90 in the open conformation, does 

not alter the membrane deformation (and presumably EV secretion) activity of Drosophila HSP90 

expressed in yeast cells51. By contrast, our results directly evaluating EV secretion demonstrated 

that treatment of MDAMB231 cells with tanespimycin reduced EV secretion. The differences in 

these two results may be due to the differences in the readouts used to profile EV secretion: 

membrane deformation in the Drosophila cells vs. direct profiling of EV secretion here. The pivotal 

role for HSP90 in influencing secretion of EVs containing CD63 was independently confirmed via 

knockout of HSP9052.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.13.503860doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.13.503860


 

15 

To determine whether our EV-sig genes can act as biomarkers of EV secretion in patient 

biopsies, we investigated the correlation of EV-sig gene expression with outcome for patients 

whose data are available through The Cancer Genome Atlas (TCGA) and METABRIC databases. We 

discovered that elevated expression of EV-sig genes is associated with increased tumor size and 

stage of cancer and an enrichment of more aggressive subtypes such as basal-like and HER2-

enriched subtypes. Not surprisingly, elevated expression of EV-sig genes was associated with poor 

survival, and immune decomposition analyses revealed that tumors that express high levels of 

these genes were characterized by poor CD8+ T cell infiltration.  

In summary, we have performed integrated single-cell profiling of EV secretion and 

transcriptomes of breast cancer cells. We provided direct evidence for the role of HSP90 in EV 

secretion and showed that expression levels of four genes, which are correlated with EV secretion 

in cell lines, can be used to stratify tumor aggressiveness and survival within breast cancer patients. 

We anticipate that our method for directly identifying the molecular determinants of EV secretion 

will have broad applications across cell types and diseases. 
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Material and Methods 
Cell culture 

MDAMB231, HCC70, and MCF7 cells were purchased from ATCC. We cultured 

MDAMB231 and HCC70 cells in RPMI 1640 supplemented with 10% FBS, 1% L-glutamine, 1 % 

HEPES, and penicillin-streptomycin. We cultured MCF7 cells in Eagle’s Minimum Essential 

Medium with 10% FBS, 1% HEPES, MEM Non-Essential Amino Acids, and penicillin-streptomycin. 

We tested all cells for mycoplasma contamination using real-time PCR. 

Single-cell EV detection assay 

We analyze the secretion of EVs from single cells as previously described26. Briefly, we 

labeled cells with PKH67 dye (Sigma-Aldrich, catalog number PKH67GL-1KT) as directed by the 

manufacturer. To capture the EVs on the surface of LumAvidin beads (Luminex, catalog number 

L100-L115-01), we incubated the beads with 3.5 µg/ml biotinylated anti-CD81 antibody 

(BioLegend, clone TAPA-1) at the room temperature for 40 min, followed by three washes in PBS 

with 1% BSA. Then we loaded the labeled cells and functionalized beads into nanowells coated 

with PLL-g-PEG (SuSoS) and incubated at 37 °C. At 45 min before each detection time point, we 

added 4 µg/ml PE-labeled anti-CD63 antibody (BioLegend, clone H5C6). We imaged the nanowell 

using Zeiss Axio Observer Z1 microscope equipped with 20x/0.8 NA objectives and a Hamamatsu 

Orca Flash v2 camera. 

We analyzed the TIFF images exported from the microscope as previously described26. 

Briefly, we segmented, quantified the cell to bead ratio, identified the cell to bead ratio of 1:1, and 

calculated the background-subtracted pixel values for identification of secreting and non-

secreting cells. To analyze the dynamic of secretion from single cells, we detected the wells which 

maintained the 1:1 ratio during entire time course of the experiment. Then, based on a two-tailed 
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t-test of the CD63 intensity per pixel, we selected a significant increase with p-value < 0.01 as the 

criterion for a change in the secretion behavior of the cell. 

Establishment of clonal cell lines 

As previously described26, we used the CellCelector micromanipulator (ALS) equipped with 

50-μm glass capillaries to retrieve the detected secretor and non-secretor single cells. We 

transferred the retrieved cells to a 96-well plate containing complete media and cultured the cells 

up to 24 population doublings. 

Wound healing assay 

We cultured MDAMB231-S and MDAMB231-NS cells to 90% confluency in 12-well plates 

in media containing 10% FBS. We then replaced the media with media containing 0.5% FBS and 

cultured for an additional 18 h. After this starvation period, we scratched the monolayer with 10 

µl pipette tips and washed the wells twice with PBS. During the assay, we incubated the cells with 

media containing 0.5% FBS. At several time points, we obtained images with the Zeiss Axio 

Observer Z1 microscope equipped with 20x/0.5 NA objectives. We analyzed the images with the 

Tscratch tool53.  

EV quantification using a transwell assay  

We utilized a Transwell insert with a 3-µm pore membrane. and loaded functionalized beads in 

the lower compartment, and cells in the upper compartment of the insert. For HSP90 inhibitor 

assays, we covered the transwell with 10 nM or 30 nM of tanespimycin or ganetespib. After 48 h 

at 37 °C, we collected the beads and labeled them with 4 µg/ml PE-labeled anti-CD63 antibody 

(BioLegend, clone H5C6) for 45 min at 37 °C. We subsequently washed the beads three times in 

PBS with 1% BSA and imaged the wells using a Zeiss Axio Observer Z1 microscope equipped with 
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20x/0.8 NA objectives. Using ImageJ, we segmented and measured the fluorescent intensity of 

CD63. 

Surface marker staining 

To measure the expression of CD81, we coated the cells with 3.5 µg/ml biotinylated anti-

CD81 (BioLegend, clone TAPA-1) antibody at the 37 °C for 30 min. After one wash in PBS with 1% 

BSA, we stained the cells with 4 µg/ml PE-streptavidin (BioLegend) at the 37 °C for 45 min. We 

imaged the cells using a Zeiss Axio Observer Z1 microscope equipped with 20x/0.8 NA objectives, 

and quantified the CD81 signal using ImageJ. 

Single-cell RNA-sequencing  

We labeled HCC70, MCF7, MDAMB231, MDAMB231-S, and MDAMB231-NS cells 

separately with the Sample-Tags from the BD Human Immune Single-Cell Multiplexing Kit (BD 

Biosciences) as described in the manufacturer’s protocol. Then, we prepared a library from ~5000 

cells (approximately 1000 cells from each group). We used the BD Rhapsody System to prepare 

samples for transcriptome analysis. We assessed the quality and quantity of the final library using 

the Agilent 4200 TapeStation system using the Agilent High Sensitivity D5000 ScreenTape and a 

Qubit dsDNA HS Assay, respectively. We diluted the final library to 3 nM concentration and used 

a HiSeq PE150 sequencer (Illumina) to perform the sequencing.  

Sequencing read alignments 

We analyzed the FASTQ files using the BD Rhapsody WTA Analysis Pipeline available on 

the Seven Bridges website (https://www.sevenbridges.com/). After performing alignment, filtering, 

and sample tag detection, we downloaded the sample tag calls and molecule count information 

for further analysis in R (v 4.0.1) using Seurat Package (v 3.0)54. 
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Data processing and identification of differentially expressed genes  

We performed the clustering using the standard processing workflow in the Seurat 

Package. Briefly, we removed cells with less than 8000 gene count, cells with mitochondrial genes 

at greater than 20% of the reads, and cells in clusters that contained a mixture of sample tags, 

resulting in 3431 single-cell profiles (773 MDAMB231-S cells, 815 MDAMB231-NS cells, 971 

MDAMB231 cells, 645 MCF7 cells, and 227 HCC70 cells). Next, we identified the differentially 

expressed genes using the Findmarkers function in Seurat. We selected the markers with greater 

than 1.2-fold higher expression in MDAMB231-S cells in comparison to MDAMB231-NS cells as 

the gene signature for EV secretion. 

ExoCarta dataset analysis 

We downloaded the list of proteins and mRNAs in the ExoCarta dataset 

http://exocarta.org/download.  

Gene correlation analysis 

To calculate the Spearman correlation between genes, we used the cor.test function in R. 

We created the heatmaps of correlation coefficients with pheatmap package (v 1.0.12).  

Gene set enrichment analysis for breast cancer cell lines 

To perform pathway analysis, we pre-ranked DEGs (p-value < 0.05) between each pair of 

cell lines identified using the Findmarkers function in Seurat package. We ran the GSEA software 

provided by UC San Diego and Broad Institute using Broad Institute C2: curated gene sets. 

Core signature identification and network analysis 

We calculated the Spearman correlations between identified DEGs between MDAMB231-

S cells and MDAMB231-NS cells. We used ward.D2 as a hierarchal clustering method along with 
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Euclidean distance method to cluster the markers. Using the pvclust package (v 2.2-0)55, we 

assessed the uncertainty in clustering analysis. We used the approximately unbiased value > 95 

as the criteria for a significant cluster. We plotted the heatmap using pheatmap package. 

To build the network between markers, we used igraph package (v 1.2.5)56. First, we created 

an undirected network containing a list of links and nodes. The size of nodes represented the 

average gene expression of each marker and the links represented the Spearman coefficient 

between each marker. Next, we removed the negative links, and to simplify the network, we 

removed the links that showed a smaller coefficient than the average of positive links. To visualize 

the network, we used the layout algorithm of layout_with_graphopt. 

Cancer Cell Line Encyclopedia (CCLE) analysis 

We downloaded the CCLE log2 transformed RNA-seq TPM gene expression and the cell 

line information from the DepMap portal (https://depmap.org/portal/download/). To perform the 

correlation analysis, we filtered the gene expression matrix for the genes of EV-sig and determined 

Spearman correlations among these genes in the 1304 cell lines available. To analyze the 

correlations with respect to breast cancer subtype, we first selected breast cancer cell lines using 

the primary_disease information. Then, using the lineage_molecular_subtype, we grouped the cell 

lines into different subtypes. 

TCGA and METABRIC analyses 

We downloaded all the TCGA data, including raw counts, RSEM gene normalized 

expression, and clinical data from the Broad Institute FireBrowse Data Portal (www.firebrowse.org). 

For tumor size, and stage analyses, we downloaded the BRCA_clinicalMatrix file from University of 

California Santa Cruz Xena Hub Portal (https://xena.ucsc.edu/) and used 
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PAM50_mRNA_nature2012, Tumor_nature2012, and AJCC_Stage_nature2012 for PAM50, tumor 

size, and stages information, respectively. We downloaded all METABRIC data, including gene 

expression and clinical data from the cbioportal for cancer genome (www.cbioportal.org). We 

calculated the Spearman’s rank correlation coefficients using the cor.test function and plotted 

using pheatmap package in R. For survival analysis, we used the Kaplan-Meier method. We 

compared the overall survival of patients divided by the median expression of the four EV-sig 

genes. Using the log-rank test, we calculated the statistical significance of survival curves. To 

perform pathway analysis, we identified DEGs between patients and divided by the median 

expression of the four EV-sig genes using the DESeq2 (v 1.22.2) package57 for TCGA dataset. To 

calculate the DEGs for the METABRIC dataset, we performed a Wilcoxon test. We next used the 

pre-ranked genes with a significant p-value of < 0.05 to run GSEA software provided by UC San 

Diego and Broad Institute using Broad Institute C2: curated gene sets. We used the normalized 

gene expression of breast cancer patients to estimate the relative fraction of 22 immune cell types 

using 1000 permutations with the CIBERSORTx analytical tool. We calculated the cytolytic activity 

as the geometric mean of PRF1 and GZMA as previously described58. 
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Figure 1 

 

 

Figure 1. Establishment of monoclonal cell lines with different rates of EV secretion 

A. The workflow for the identification and isolation of single cells with differences in EV 

secretion capacity. 

B. Representative images of MDAMB231-S and MDAMB231-NS cells in wells (left), at high 

resolution (middle), and as contour maps of intensity of CD63. 

C. Images of (top to bottom) cells in wells, high resolution of CD63, and CD63 intensity 

contour maps of representative MDAMB231-NS (left) and MDAMB231-S (middle) cells at 
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2, 4, and 6 h. Right: Violin plots of medians and quantiles of CD63 intensities (**** p < 

0.00001; t-test).  

D. CD63 intensity as a function of time for MDAMB231-S (left) and MDAMB231-NS (right) 

cells plotted as means ± SEM. Two subpopulations are present: cells that continuously 

secrete EVs (green) and cells that secrete EVs in a burst at 2 h (blue).  

E. Left: Representative photographs of wound healing assays. Scale bar is 100 μm. Right: Plot 

of mean percent wound healed ± SEM versus time (n= 7 for each cell line; * p < 0.05, *** 

p < 0.001, and **** p < 0.0001; two-way ANOVA).  

 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.13.503860doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.13.503860


 

33 

Figure 2 

 

Figure 2. Identification of molecular signatures of EV secretion by scRNA-seq analysis 
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A.  The workflow of single-cell RNA sequencing and whole transcriptome profiling for 

monoclonal cell lines. 

B. The UMAP plot of scRNA-seq data from MDAMB231-S and MDAMB231-NS cells. 

C. Venn diagram of the overlap of genes differentially expressed MDAMB231-S cells 

compared to MDAMB231-NS cells with mRNA and proteins from the ExoCarta dataset that 

are annotated as associated with EVs. 

D. Violin plots of genes upregulated in MDAMB231-S in comparison to MDAMB231-NS cells. 

E. Heatmap of the top 34 genes upregulated in MDAMB231-S cells. The colors to the left 

indicate ExoCarta annotation as associated with EV or linkage to breast cancer or other 

cancer types. 

F. Heatmap of Spearman coefficients for correlations between genes upregulated in 

MDAMB231-S cells relative to MDAMB231-NS cells. AU and BP indicate approximately 

unbiased and bootstrap probabilities, respectively. The correlations among EV-sig genes, 

HSP90AA1, HSPH1, DIAPH3, and EIF5, are highlighted. 

G. Network of top genes upregulated in MDAMB231-S cells relative to MDAMB231-NS cells 

with HSP90AA1, HSPH1, DIAPH3, and EIF5 highlighted. 

H. Spearman correlation coefficients for four core EV genes and surface markers CD63, CD81, 

and CD9 in MDAMB231-S cells. 
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Figure 3 

 

Figure 3. EV secretion is correlated with migration in breast cancer cell lines 
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A. Left: Representative images of wound healing assays showing the migration of 

MDAMB231, MCF7, and HCC70 cells over time. Scale bar is 100 μm. Right: Plot of mean 

percent wound healed ± SEM versus time (n=9; * p < 0.05, *** p < 0.001, and **** p < 

0.0001; two-way ANOVA).  

B. UMAP plot of scRNA-seq data from MDAMB231, MCF7, and HCC70 cells. 

C. Heatmap of expression of genes associated with luminal, basal A and, basal B breast cancer 

subtypes in MDAMB231, MCF7, and HCC70 cell lines. 

D. Normalized enrichment scores (NESs) of pathways associated with metastatic cancer and 

luminal and basal breast cancer subtypes by pairwise comparison between MDAMB231 

and MCF7 cells. 

E. NESs of pathways associated with metastatic cancer and luminal and basal breast cancer 

subtypes by pairwise comparisons between MDAMB231 and HCC70 cells (left) and 

between MCF7 and HCC70 cells (right). 
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Figure 4  

 

Figure 4. EV-sig is predictive of EV secretion by immortalized cells 
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A. Violin plots of average expression of EV-sig genes in MDAMB231, MCF7, and HCC70 cells 

(n = 227, 645, 971 for HCC70, MCF7, and HCC70 cells, respectively; **** p < 0.00001; t-

test). 

B. Spearman correlation coefficients among EV-sig genes in MDAMB231, MCF7, and HCC70 

cells.  

C. Violin plots showing the expression of CD63 and CD81 in MDAMB231, MCF7, and HCC70 

cells.  

D. Left: Images of (top to bottom) cells in wells, high resolution of CD63 on cell, and CD63 

intensity contour maps of representative MDAMB231, MCF7, and HCC70 cells at 6 h. Right: 

Violin plots of represent the median and quantiles of CD63 intensity (**** p < 0.00001, t-

test).  

E. Left: Images of representative functionalized beads in culture with MDAMB231 and HCC70 

cell lines for 48 h in transwell assay. Right: Violin plots of the median and quantiles of CD63 

intensities (**** p < 0.0001; t-test).  

F. Images of (top to bottom) cells in wells, high resolution of CD63, and CD63 intensity 

contour maps of representative MCF7 cells (left) and MDAMB231 cells (Middle) at 2, 4, and 

6 h. Right: Violin plots of the median and quantiles of CD63 intensities (**** p < 0.00001; 

t-test).  
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Figure 5 

 

Figure 5. Expression of EV-sig genes is correlated with poor survival in breast cancer 

patients.  

A. Spearman correlation coefficients of EV-sig genes in breast cancer patients from TCGA 

dataset. 

B. Overall survival of breast cancer patients divided by the median of the average expression 

of EV-sig genes (n = 547, and 546 for BRCA_EVHi and BRCA_EVLo, respectively).  
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C. Violin plots of average expression of EV-sig genes by breast cancer stage (n=108, 371, 153, 

and 13 for Stage I to V, respectively; * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 

0.0001; one-way ANOVA).  

D. Violin plots of average expression of EV-sig genes by the size of the tumors with T1 the 

smallest (n= 174), T2 intermediate (n =395), and T3 & T4 the largest (n=94); (* p < 0.05, ** 

p < 0.01, *** p < 0.001, and **** p < 0.0001; one-way ANOVA).  

E. Violin plots of average expression of EV-sig genes by the breast cancer subtype (n=8, 191, 

109, 53, and 83 for normal-like, luminal A, B, HER2-enriched, and basal-like subtypes, 

respectively; * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001; one-way ANOVA).  

F. NESs of pathways associated with metastasis in patients with high and low levels of EV-sig 

gene expression.  

G. CD8+ T cells infiltration based on CIBERSORTx data for patients with high and low levels of 

EV-sig gene expression (**** p < 0.0001; t-tests).  

H. Cytolytic activity scores and geometric means of PRF1 and GZMA mRNA levels in patients 

with high and low levels of EV-sig gene expression (* p < 0.05; t-test).  

I. Normalized expression of CD8+ T cell gene signature (CD8A, PRF1, TBX21, GZMA) in the 

patients with high and low levels of EV-sig gene expression (* p < 0.05, ** p < 0.01, *** p 

< 0.001, and **** p < 0.0001; t-test). 
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