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ABSTRACT 

Immunotherapy has revolutionized the treatment of cancer and newer approaches 

including the adoptive transfer of genetically modified T cells reprogrammed to target 

tumor antigens have shown remarkable responses. Despite their promise, the efficacy of 

adoptive immunotherapy remains unpredictable due to the heterogeneous nature of the 

infusion products, patients’ characteristics, treatment regimens, and tumor burdens. 

Specifically with regards to the T-cell infusion product, there is a need to develop 

methodologies that allow for definition of potencies to understand the phenotypic, 

molecular, and functional contribution of infusion products at single-cell level.  

In the first part of this dissertation, we implemented Timelapse Imaging 

Microscopy in Nanowell Grids (TIMING) to demonstrate that while CD4+CAR+ (CAR4) 

cells killed at slower rate, most likely due to lower granzyme B content, they benefited 

from apoptosis resistance compared to CD8+CAR+ (CAR8) cells. These findings suggest 

that overall potency of multi-killing should be evaluated together in their context to resist 

apoptosis.  

In the second part of this dissertation, we developed single-cell multiplexed 

platforms comprising beads biosensors for detecting protein secretion, TIMING to monitor 

motility and cell-cell interactions, and microfluidic qPCR for transcriptional profiling. 

Analysis of thousands of single-cell interactions for over 5 hours revealed that the 

integrated behavior of polyfunctional T cells that kill and secrete IFN-γ was similar to those 

without IFN-γ secretion, suggesting cytolysis to be the dominant determinant of the 

interaction behavior and that killing enables faster synapse termination. In addition, 

tracking the speed of these cells by TIMING indicated that serial killer T cells may be 
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identified based on their high out-of-contact basal motility. Transcriptional profiling of 

these single-cells confirmed that the motile cells expressed increased amounts of perforin 

and displayed an activated phenotype.  

In summary, these results highlight the heterogeneity of immune cells and thus, the 

need for definition of potency prior to infusion. We propose that single-cell platforms as 

demonstrated here are suitable to uncover the diversity and to help identify optimal 

functional and molecular biomarkers for applications in the clinic.  
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1. Introduction 

The heterogeneous nature of the immune cells and understanding of their respective 

potencies and interactional behaviors remain one of the most complex problems in 

biological systems. In the context of cancer immunotherapy, for example, infusion of bulk 

population of immune cells in adoptive cell therapy to fight cancer has often been met with 

varying results ranging from no response to complete remission. These results are 

understandable given the heterogeneity of the genetic makeup of the patients, of the 

infusion products, and the complexity of the tumor microenvironment just to name a few.  

While bulk assays have been exceptional in providing insights into how populations 

of cells behave as a whole, the measurements obtained are average responses of the whole 

systems. This approach of averaging responses have implicit limitations i.e., the masking 

of specific cells with respect to its phenotypes (subsets, gene, protein expression, etc.), 

functionalities (cytolytic efficacy, cytokine secretion, motility, etc.), and interactional 

behaviors (cooperative, inhibitory, etc.).  There is therefore a need to tackle this problem 

starting with an approach that we can control with relative ease i.e., understanding the 

makeup of this heterogeneous body of infusion products and furthermore, to identify and 

quantify the contribution and interactional behaviors of these products at single-cell level. 

Significantly, it is necessary to identify which single-cell with its functionality/ biomarkers 

or combinations (polyfunctionality) that is truly necessary and critical in mediating anti-

tumor response, as not all immune cells in the infusion products contribute to tumor 

eliminations in cancer immunotherapy (1).  

Cancer is a family of diseases involving abnormal cell growth stemming from 

genetic changes, which can be attributed to both external and internal factors. Some of the 
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treatment regiments available to cancer immunotherapy include chemotherapy, checkpoint 

blockades, vaccines, oncolytic virotherapy, kinase inhibitors, and adoptive cell therapy. 

The decision on the choices of treatments depends on several factors such as the types and 

severity of the leukemia, patients’ age, white blood cell (WBC) count, cancer genetics, and 

previous exposure to cancer or treatment (2). Chemotherapy entails the use drugs to cure, 

control, or ease cancer symptoms. Several types of chemotherapy drugs are available 

commercially, each with their own mechanism of actions. Chlorambucil and 

cyclophosphamide are alkylating agent that are typically taken orally, and they work by 

attaching alkyl groups to DNA, thus damaging the DNA and cells in the process (3).  

Fludarabine is a purine analog that inhibits DNA synthesis and is taken intravenously (4). 

In the clinic, chemotherapy drugs have often been combined with FDA-approved 

monoclonal antibodies to combat cancers. In leukemia, the combinatorial use of 

fludarabine and cyclophosphamide with rituximab for example, has been shown to increase 

the survival rates of patients in the clinic (5). While the use of chemotherapy in combating 

cancer is promising, it is however not without any disadvantages. Chemotherapy drugs 

have been known to induce adverse side effects such as persistent fatigue, nausea, and hair 

loss (6). Although these drugs may work well against abnormal cancer cells, the effects of 

the drugs were also carried over to normal healthy cells. As expected, alkylating agents 

such as cyclophosphamide, also disrupt the DNA of normal healthy cells. Similarly, with 

rituximab mAb therapy, healthy B cells possessing CD19 on the surface were also killed 

in the process.  

Vaccination has shown considerable promise in the regulation of immune response 

in fighting cancer and other diseases. As an example, Sipuleucel-T, a first dendritic cell 
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(DC) based vaccines approved by the FDA, has been shown to mediate anti-tumor response 

and prolong survival rate in several patients with prostate cancer(7). In other efficacy 

studies, vaccines have elicited antigen-specific polyfunctional responses of T cells in 

diseases model of HIV (8), vaccinia virus (9), and yellow fever (10, 11). While tools such 

as DNA microarrays allow for high-throughput profiling of vaccine-induced immune cells, 

they are limited with respect to averaging of the responses of immune cells at population 

level, thus downplaying the significance of the variation of polyfunctional immune cells. 

Importantly, analysis of rare subsets of these antigen-specific immune cells has also proven 

to be challenging.   

FDA-approved checkpoint inhibitors such as anti-PD1 and anti-CTLA4 are two 

common inhibitors that have been studied extensively (12-14). CTLA-4 has been shown to 

be upregulated on T-cell surface, leading to the decline in T cells activation in response to 

tumor antigen. Similarly, PD-1 ligand has been found to be upregulated on the surface of 

certain tumors, contributing to inhibit T cells functions and to promote tumor escape 

mechanism. As in the case of vaccination and chemotherapy, the efficacy of these 

checkpoint inhibitors has shown varying efficacy from patients to patients, due to the 

heterogeneity of the tumor cells and the infusion products of each patient. 

Another emerging treatment in cancer immunotherapy is oncolytic virotherapy, 

which uses carefully selected, replication-competent viruses to destroy cancerous tissues 

while causing no harms to normal tissue (15, 16). Oncolytic viruses kill cancerous cells in 

different ways ranging from direct cytotoxicity of the virus to a complex immune effector-

mediated mechanism. One critical milestone of oncolytic virotherapy is demonstrated in a 

phase III melanoma clinical trial using talimogene laherparepvek (T-VEC) based on 
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engineered herpes simplex virus 1 (HSV-1). T-VEC possesses a dual-mechanism of action, 

destroying cancerous tissues through direct cytotoxicity and also by promoting cancer cell 

recognition and destruction by immune cells. The proposed mechanism of action can be 

broadly categorized into three parts i.e., (1) viruses enter normal tissues, unable to replicate, 

thus leaving cell unharmed, (2) viruses enter cancerous cells, replicate and secrete GM-

CSF until the cell lyses with subsequent release of viruses and GM-CSF into circulation, 

and (3) GM-CSF attracts dendritic cells, which then present antigen to T cells. Despite this 

promising result, oncolytic virotherapy remains highly challenging due to several reasons 

i.e., difficulty to optimize systemic viral delivery, intratumoral spread, and cross-priming 

of immune system. As expected, suppression of immunity may increase intratumoral 

spread but at the same time diminishes cross-priming of immune cells and vice versa. In 

addition, clinical testing has suggested that this approach to move new product into phase 

I requires enormous work, expenses, toxicology testing, and regulatory approval.  

Tyrosine-kinase inhibitors (TKI) represent another class of drugs that are 

commonly used in combating cancer by blocking the signal transduction cascades. 

Selective targeting of genetically altered tyrosine kinases have shown significant results in 

the clinical setting, suggesting that altered tyrosine kinases are main drivers of different 

cancers (17). One commercially available TKI that has been used to fight chronic 

myelogenous leukemia (CML) is the Bcr-Abl TKI. The Bcr-Abl tyrosine kinase (imatinib) 

results from abnormal fusion of break point cluster (Bcr) gene at chromosome 22 and 

Abelson (Abl) gene at chromosome 9, and it has been implicated in pathogenesis of more 

than 90% of CML cases. Other examples of TKIs drugs include gefitinib (18) and erlotinib 

(19) which act on epidermal growth factor receptor (EGFR). Overall, TKI drugs are 
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promising approach to fight cancer due to their relatively lower toxicity and higher 

specificity compared to non-specific chemotherapy drugs. Challenges associated with 

TKIs lie in the identification of suitable tyrosine kinases to inhibit, and the need for relevant 

in vivo models to assess function of both mutated and non-mutated tyrosine kinases. 

Immunotherapy such as adoptive cell therapy (ACT) involves the use of the 

patients’ own immune cells to mount a response against the tumor. ACT is a targeted 

therapy which has shown great promise in recent years (20, 21).  In this therapy, immune 

cells such as T cells are isolated from patients, expanded in vitro, and then re-infused back 

into patients. While ACT with T cells and genetically engineered immune cells represent 

a major advance in steps toward tumor eradications, they were not without their challenges. 

As evidence, clinical results have shown that there are currently no therapy applicable or 

“magic bullets” that can be used to treat all types of patients with similar conditions. This 

observation is understandable given the lack of surface tumor antigen, heterogeneity of the 

tumor cells, infusion products and their respective potencies. The current technology of 

ACT is still generic with respect to the same receptors of immune cells being used for 

infusion but as more advanced genome engineering technologies such as TALEN and 

CRISPR-Cas9 become available and as neoantigens or biomarkers were discovered, 

approaches toward a more personalized gene-modified ACT can be achieved (22). 

Nowadays, immunotherapy represents one promising approach for several cancer 

cases owing to its varying treatment options and promising results in the clinic. Checkpoint 

blockades and CAR+ based ACT, for example have shown durable responses in patients, 

even for those previously refractory to other chemotherapies. While this progress is 

remarkable, several questions and challenges still remain. For one thing, combinatorial 
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treatment has been expected to work on several settings. Combination of anti-PD1 and anti-

CTLA-4 blockade with vaccine for example, has been shown to restore tumor rejection 

function of T cells in in vivo mice model.  Despite this, there is still substantial debate over 

the optimal combination modules.   

In the ACT front, it has been shown that ACT works in several patients on the 

clinical setting, however, these results only applies to a proportion of patients most likely 

due to factors such as heterogeneity of immune cells/infusion products, tumor burden, and 

genetic makeup of the patients. With respect to this heterogeneity of the inoculum, there is 

therefore a need to identify biomarkers/functionalities and define potency that can predict 

success, and this can be achieved by using the many single-cell profiling technologies that 

were available today. This step is necessary since analysis at the population level give only 

the average responses, and it has been shown that there is a subset of cells that contribute 

to the majority of anti-tumor response, thus making the selection and identification of these 

small subsets of cells critical not only for the sake of understanding mechanistic insights 

of these cells but also for design and manufacture of future infusion products. Some of the 

most well described functionalities of immune cells are direct cytotoxicity (23, 24), 

secretion of pro-inflammatory cytokines(25, 26), and motility (27). Success in quantifying 

this heterogeneity at single-cell at high throughput across multiple biological dimensions 

starting from intracellular and extracellular signaling to genomes and transcriptomes to 

cellular interactions could have huge implications on the discovery and improvement of 

immunotherapy (28).  

In the past few decades, several single-cell technologies had been developed to 

study the functionality of immune cells. While in vivo systems that replicate the nature of 
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the tumor microenvironment were desirable, they were typically not cost-effective and 

require complex tools to perform. In addition, analyses of these data were often difficult 

and exacerbated by background noise. On the other hand, in vitro microsystems and 

microfluidic systems were suitable for high throughput interrogation of single cells as they 

were more cost effective, simpler to run, and relatively easy to customize, though they were 

typically lacking when it comes to spatial and temporal resolution for studying complicated 

systems. With that being said, microsystems have developed to become more powerful as 

they had been adapted to handle multiplexing for interrogation of multiple functionalities 

in high throughput manner, all on conditions that mimic closely those in vivo. In this 

review, we examined recent single-cell microfluidic systems and looked at how a dynamic 

and modular system can help us expand and decouple the complex depths and breadths of 

heterogeneous systems. 

1.1.  Single-cell system for protein secretion and proteomic studies  

Microfluidics system are versatile enough to be extended to study the multiplexing 

capacity of immune cells and can be incorporated with other functional assays while 

minimizing undesired perturbation and damage to cells. In the context of proteomic studies 

for single-cells, two of the most common microfluidic approaches used are microengraving 

and antibody barcode arrays.  

1.1.1. Microengraving 

 Initially described by the Love group, microengraving was in the beginning used 

predominantly for rapid screening of antigen specific antibodies from individual 

hybridoma cells (29). This technology is based on the soft lithography technique and 

polydimethylsiloxane (PDMS) arrays in which submicron wells at pico-liter volume were 

used to isolate and protein secretion from single cells. 
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Figure 1: Schematic of microengraving for detection of end-point cytokine 
secretion from single cells 

Today, microengraving techniques have been expanded and coupled with other functional 

techniques such as cytolytic frequency measurement through end-point imaging on 

nanowell arrays, making it a powerful system for studying multi-functional attributes of 

single cells.  
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In microengraving, nanowell arrays containing ~100,000 wells containing single 

cells were hybridized/printed with functionalized glass substrate coated with capture 

antibodies against cytokines of interest (30, 31) (Figure 1, reproduced and captioned from 

{Ogunniyi, 2009 #289}, copyright owned by Nature Publishing Groups). 

During hybridization, cytokines secreted from single-cells were captured on the 

functionalized glass substrate and detected with secondary label antibodies. The strength 

of these techniques lies in the fact that specific cells with desired phenotypes can be 

retrieved for further profiling using micromanipulator. In addition, Han et al. has also 

shown that sequential microengraving can be performed for prolonged amount of time (>12 

hr) at an interval of 2 hr for each hybridization to look at kinetics of cytokine secretion 

(32). This process however is time consuming and labor intensive as it requires many 

washing steps and careful printing/separation steps in which cells may potentially be lost. 

In addition, microengraving is usually performed after cytolytic assay and requires long-

term hybridization, thus the complete kinetics of cytokine secretion may not be captured 

entirely as the kinetic windows for each hybridization are typically long (>1hr). In addition, 

due to the encapsulated nature of the process, a lack of nutrient and gas exchange for 

prolong amount of time may potentially affect the biology of the cells. In addition, 

accumulation of protein over time in constraint wells might potentially affect the behavior 

of cells thus it may not be compatible for long-term studies. 

1.1.2. Antibody barcode arrays 

Developed by the Heath group, single-cell barcode arrays (SCBC) comprises 

hundreds to tens of thousands of microchambers (<1 nL volume) in which protein 

concentration is measured by utilizing spatially resolved miniature antibody arrays with 
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immunosandwich assays (33-35). Using multi-color scheme and specific design of SCBC 

to enable cell lysis, this approach can be used to assay around 20 secreted, membrane, or 

cytoplasmic proteins and it can be integrated with multi-color flow cytometry to combine 

functional proteomics with phenotypic analyses. 

 

Figure 2: SCBC for single-cell protein secretome analysis 
In one of the study with modified SCBC, Wang et al. associated PI3K signaling 

activity with cell-cell separation in a tumorigenesis study of glioblastoma multiforme 

cancer cells (36). Looking at interactions of pairs of brain cancer cells, they found that at 

short time interval (30 min), the cells do not exhibit any influencing behavior on one 

another. At long time interval (6 hr), however, they found that cells inhibits one another 

based on protein expressions at short distance (<90 µm). On the contrary, at long distance 

(>90 µm), the pair of cells mostly exhibit activating responses on one another.  
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On a separate study with SCBC, Ma et al. studied the functional diversity of melanoma-

associated antigen MART-1 specific CD8+ T cells from 3 representative clinical trial 

patients (Figure 2, reproduced and captioned from (33), copyright owned by Nature 

Publishing Groups). Specifically, they performed a kinetic study that last for a 90 day trials 

by combining a 19-plex SCBC functional proteomic assays with 10-color flow cytometry 

to look at the evolution of T cells phenotypes. The conclusions from this study were two 

fold (1) by combining the single-cell data from each patient, T cells could be loosely 

classified based on their biological behavior such as anti-tumor or pro-inflammatory (2) 

there exists a subset of highly polyfunctional T cells in which roughly 10% of these T cells 

secrete five or more different proteins and they do this at an approximate 100 –fold higher 

copy numbers compared to the less polyfunctional T cells.  Importantly, this 

polyfunctionality kinetics correlates with clinical observations.  

On a separate and recently published study, Lu et al. from the Fan group 

demonstrated a highly multiplexed platform to detect secretion of 42 immune proteins, the 

highest multiplexing recorded to date at single-cell level (37). This technology works by 

super-imposing an antibody barcode array with a PDMS-based microchamber array 

containing single cells, thus creating an encapsulation. The barcodes capture secreted 

cytokines during hybridization and are subsequently removed and completed with 

detection antibodies. In this study, Yao used this platform to profile lipopolysaccharide 

(LPS) stimulated macrophages. Their key findings were as follows (1) this technology 

revealed the existence of macrophage dynamic macrostructure within the population which 

is conserved in response to different toll like receptors (TLR) stimulation (2) this 

technology revealed profound functional subpopulations with differential response and 
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activation level in this phenotypically homogeneous population (3) this technology 

promoted identification of macrophage inhibitory factors (MIF) that potentiate activation 

of LPS-regulated cytokines.  

Overall, antibody barcode arrays are robust platform for highly multiplexed 

quantification of proteomes for single-cell studies. They are scalable, high-throughput, and 

require small sample size suggesting potential integration capability with other upstream 

approach such as flow cytometry. Despite these advantages, antibody barcode arrays may 

also suffer from encapsulation process as in the case of microengraving. Both of these 

techniques are also heavy on the data front. In microengraving for example, quantitative 

modeling and analysis are required to obtain frequency and secretion or distribution of 

secreting single cells on the nanowell arrays. Similarly, in antibody barcode arrays, 

unsupervised data-driven modeling and clustering was critical to understand and uncover 

the unique information disclosed through single-cell measurements.  

1.1.3. Mass cytometry (CyTOF) 

Flow cytometry is a powerful single cell technology that allows for rapid screening 

of up to 15 fluorescent parameters. One of the limitations of the flow cytometry is the 

reliance on fluorescent tags conjugated to antibodies, which may result in auto-

fluorescence and spectral overlap. These issues were exacerbated as more fluorochromes 

were used (38). To circumvent these issues, a new technology has to be considered. Mass 

cytometry is a powerful technique that relies on highly purified stable rare metal isotopes 

as the labels to the antibodies and it has several advantages over flow cytometry such as: 

(1) no auto-fluorescence as the isotopes were not present in biological samples, (2) no 
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compensation as there is no spectral overlap, (3) higher multiplexing capability (>40+ 

parameters possible), (4) improved conjugate signal intensity.  

In a study by Bendall et al. from the Nolan group, they used mass cytometry to 

simultaneously measure 34 parameters of single-cell (31 antibody bindings, DNA content, 

viability, and cell size) in a healthy human bone marrow model (39). Eighteen markers of 

functional signaling states perturbed by stimuli or inhibitors was used to monitor signaling 

behavior of cell subsets of a defined hematopoietic hierarchy, and the resulting data set was 

categorized and clustered as defined by surface expression, resulting in superimposable 

map of single-cell signaling response with drug inhibition. Significantly, the analyses 

revealed precise signaling motifs within defined cell subsets and continuous 

phosphorylation behaviors crossing population boundaries that can be tracked closely with 

cellular phenotypes. Overall, mass cytometry allows for highly multiplexed coupling of 

phenotypic characterization/biomarkers of single-cell with functional responses. Despite 

these advantages however, mass cytometry suffers from lower throughput (10x lower than 

flow cytometry), no cell sorting capability, low frequency of cells analyzed (only ~30 %), 

and small selection of compatible antibodies for tagging. 

In a separate study by Bodenmiller et al. also from the Nolan group, they introduced 

mass-tag cellular barcoding (MCB), which increases traditional mass cytometry 

throughput by using n metal ion tags, thus bringing up the multiplexing capacity up to 2n 

samples (40). In this particular study, Bodenmiller used seven tags to multiplex an entire 

96-well plate and applied MCB to characterize human peripheral blood mononuclear cell 

(PBMC) from eight donors, and the corresponding effects of 27 inhibitors on the PBMC 
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(Figure 3, reproduced and captioned from (40), copyright owned by Nature Publishing 

Groups).  

 

 Figure 3: PBMC signaling time-course experiment with mass cytometry 

In summary, they measured 14 phosphorylation sites in 14 PBMC types at 96 

conditions resulting in an astonishing 18,816 phosphorylation levels from each sample. 
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Overall, screening with MCB could be useful for high throughput screening in the context 

of diseases mechanistic studies, drug discovery and design, and pre-clinical testing.  

1.1.4. Droplet microfluidics 

 

Figure 4: Droplet generation in the PDMS device and illustration of 
microfluidic reaction droplet for monitoring cell surface and 
secretion simultaneously 

Another technology to study single-cell is the droplet microfluidics. Konry et al. 

designed nano-liter microfluidics based reactors coupled with microsphere-based sensors 

to stimulate and monitor surface and secreted markers of single cells and single-cell 

interactions (Figure 4, reproduced and captioned from (41), copyright owned by Nature 

Publishing Groups).  

The technology relies on microfluidics with 3 main inlets which can be modified 

depending on the desirable studies. In one of the studies, Konry et al. designed a 3 inlet 

microfluidics containing oil inlet, dendritic cells (DC) inlet and bioassay reagents inlet 
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(beads and antibodies). The oil inlet facilitated the formation of micro-reactor droplets 

encapsulating single DC with anti-CD86-FITC antibody to profile surface marker of the 

DC and beads (anti-IL-6-FITC coated) to capture secreted IL-6 from the DC 

simultaneously. Similarly, on another study, they encapsulated regulatory T cells (Tregs) 

and utilized beads to detect and screen for single cell that secrete IL-10. In another study, 

they modified the inlets of the microfluidics to include single naïve T-cell in order to 

monitor immunological synapse (IS) formation and more specifically, the cytoskeleton 

remodeling and microtubule polymerization in DCs.  

The versatility of microfluidics has allowed its technology to be readily combined 

with other technology such as flow cytometry. Chokkalingam et al. used droplet 

microfluidics and functionalized beads to probe for multi-cytokine secretion (IFNγ, TNFα, 

and IL-2) from PMA/ionomycin stimulated single Jurkat T-cell suspended in the droplet 

(42). The population of single-cell was then run through flow sorting in order to screen and 

bin the single-cell based on the types of cytokines they secreted or did not secrete.  

Overall, the droplet microfluidics technology is a powerful single-cell 

encapsulation technique to physically and chemically isolate cells while minimizing risk 

of cross-contamination and promoting fast, efficient mixing of reagents. Despite these 

advantages however, droplet microfluidics are not without their disadvantages as the 

accumulation of secreted factors from cells were isolated and not allowed to diffuse outside 

leading to aggregation of factors such as secreted proteins that could potentially alter the 

behavior of the encapsulated immune cells. In in vivo system where immune cells and 

environmental conditions were open systems, droplet microfluidics might not be 

compatible especially for long term studies.  
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1.1.5. Aptamer sensors 

Antibody detection technology typically involved multiple washes and reagents 

and on some cases, may not be compatible with real-time detection of proteins secretion. 

One of the strategies to counter this is by using aptamer beacons, which are single stranded 

DNA or RNA probes that bind proteins of interest and subsequently emit signals upon 

interaction with target proteins (Figure 5, reproduced and captioned from (43), copyright 

owned by Springer).  

 

Figure 5: Schematic description of cytokine-sensing microwells. 
Briefly, Tuleuova et al. demonstrated the use of aptamer beacons for detection of 

IFNγ in real time in microwell arrays (43, 44). Initially, the aptamer becons were quenched 

with quencher-carrying complementary strands resulting in formation of DNA duplex with 

low fluorescence. As the duplex was exposed to IFNγ, the quencher was displaced and the 

aptamer-IFNγ complex resulted in high fluorescence signals.  

1.1.6. Localized surface plasmon resonance (LSPR) 

Another microfluidics based technology to study proteins secretion from single 

cells in real time is the label-free localized surface plasmon resonance (LSPR) imaging 



18 
 

proposed by Raphael et al. (45, 46). LSPR technology works by taking advantage of the 

increase of intensity when proteins bind at the surface of a patterned metallic nanostructure 

thus creating perturbations in the local index of refraction. Upon exposure of these surfaces 

to charge-coupled device (CCD) camera, the signals are then amplified and manifested as 

bright nanostructures. The advantages of the LSPR technology are four-fold i.e., (1) real-

time measurement limited only by camera exposure time (2) ease of integration with 

traditional bright field and fluorescence imaging (3) built-in spatial and temporal 

quantitative determination of protein secretion (4) negative controls can be quantified 

based on arrays sufficiently far away from the cells. In their paper, Raphael et al. utilized 

the LSPR to temporally and spatially map secretion of anti-c-myc antibodies from single 

9E10 hybridoma cell, and found two modes of secretion. The first type of secretion was a 

continuous secretion and the second one was a concentrated burst which coincided with 

morphological contractions of the cells. Overall, this technique is highly robust and can be 

adapted as a quantitative tool for study of paracrine protein signaling.    

1.2.  Single-cell system for gene expression study 

1.2.1. Gene expression cytometry (CytoSeq) 

Aside from the quantification of proteins secretion or expression, the process of 

understanding heterogeneity of single-cells also benefits from quantification of gene 

expression. While flow cytometry can provide single cell measurement of protein 

expression, there are limited tools available for studying RNA/DNA expressions from 

single-cell. Fan et al. from the Fodor group recently developed a gene expression cytometry 

that combine next generation sequencing with stochastic barcoding of single-cell (47). This 

technology, called CytoSeq, utilized microfluidics platform with combinatorial beads 
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library to uniquely label transcripts and reconstruct digital gene expression profiles of 

thousands of single cells (Figure 6, reproduced and captioned from (47), copyright owned 

by AAAS). 

 

Figure 6: Experimental procedure for CytoSeq and structure of 
oligonucleotides attached to beads. 

Briefly, the experimental procedures involved isolating single cells on microwells 

with beads, which upon cells lysis allow for hybridization of mRNA on beads. Next, beads 

were collected from the arrays and cDNA synthesis and further amplification were 

performed on beads in a single tube. The sequencing results further revealed the cells label, 

molecular index, and gene identity. Applying this technology, Fan et al. dissected the 

human hematopoietic system and further characterized responses to in vitro stimulation. 

For example, they first simultaneously identified major cell types in human PBMC samples 

based on looking at 632 single PBMC and 98 genes and dissected these PBMCs into 

monocytes, NK cells, T cells subsets and B cells by principal component analysis (PCA). 
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They further delved into the quantification of gene expression variation in unstimulated 

CD3+ T cells vs stimulated CD3+ T cells (with antibody against CD3 and CD28) and found 

upregulation of several genes in stimulated samples. Overall, these approaches allow for 

robust and rapid quantification of gene expression, without the need for expensive robotics 

for single-cell manipulation.  

1.2.2. Fluidigm single-cell profiling 

Single cell gene expression platforms had also shown great promise in helping 

understand the roles of individual immune cell in the context of protective immunity after 

vaccination. Flatz et al. in their study profiled different subsets of CD8+ T cells and 

revealed their varying and differentially expressed gene profiles upon inductions with three 

HIV vaccines (48). While their population study with these vaccines revealed similar 

antigen-specific stimulation with respect to magnitude, phenotype and functionality of 

CD8+ T cells, remarkably, single cell gene expression analysis enabled the discrimination 

of central memory (CM) and effector memory (EM) T cells. Specifically, expressions of 

Eomes, Cxcr3, and Ccr7 or Klrk1, Klrg, and Ccr5 enabled differentiation of CM and EM 

subsets respectively. Taken together, single cell gene expression platform can facilitate the 

design and evaluation of vaccines, help decouple the mechanism of protective immunity, 

and potentially contribute to understanding and quantifying efficacy of therapies in cancer 

immunotherapy. 

1.2.3. Single-cell RNA-seq 

Cell-cell communication represents a significant event in which cells regulate their 

cellular heterogeneity upon encounter with different antigens and signaling cues. Shalek et 

al. performed single cell RNA-Seq of 1,700 primary mouse bone marrow-derived dendritic 
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cells (DCs) on microfluidic platform and found significant differences between identically 

stimulated DCs with respect to both the level of transcription of the cells and the fractions 

of DCs expressing the given mRNA (49). They uncovered a small number of “precocious” 

cells that express Ifnb1 and “core” anti-viral genes very early after lipopolysaccharide 

(LPS) stimulation, in which through the secretion of IFN-β, help promote anti-viral genes 

in other cells, leading to population level response (paracrine signaling). These 

“precocious” cells were only distinguishable through the expression of “core” anti-viral 

genes, but were critical for timely and efficient responses at the population level. Overall, 

this study highlighted the power of single cell in studying heterogeneous sample sizes 

which include rare novel subsets of immune cells and their contribution to overall 

population-level responses. 

1.3. Single-cell system for cytotoxicity and migration assays 

1.3.1. End-point imaging on nanowell arrays 

Aside from microengraving application, nanowell arrays have also been used to 

study single-cell mediated cytotoxicity. Varadarajan et al. used nanowell arrays to study 

and evaluate the ability of thousands of single CD8+ T cells to lyse HIV-infected cells and 

secrete IFNγ (50). The authors found that these two functionalities were discordant for the 

majority of single T cells as the T cells encounter cognate antigens. The evaluation of 

single-cell cytolytic efficacy in this case was performed by taking live-imaging of the 

nanowell arrays at t = 0 hr and 4 hr, and accounting for cell deaths through labeling by 

SYTOX green nucleic acid stains. Despite its powerful ability to quantify single-cell 

effector-mediated lysis, this methodology has its limitation, as it does not provide 
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information on the kinetics of killing i.e., time to kill, motility of effector cells, conjugate 

formation, eccentricity to name a few.  

1.3.2. On-chip time-lapse imaging  

On another single-cell study, Khorsidi from the Onfelt group studied the migration 

behavior of natural killer (NK) cells by utilizing time-lapse microscopy (51). Specifically, 

they calculated the mean-squared displacement of NK cells and determined the curvature 

and trajectory of individual NK cells. They further categorized the migration behaviors into 

three parts i.e., (1) transient migration arrest periods (TMAPs), (2) directed migration, (3) 

random movement, and found that TMAPs correlate with conjugation and target lysis. On 

a similar study, Forslund et al. from the Onfelt group designed and utilized microchip with 

deep wells (50 µm x 50µm x 300 µm) to perform live cell imaging and demonstrate the 

cytotoxic potential of NK cells and interactions with target cells (Figure 7, reproduced and 

captioned from (52), copyright owned by Frontiers).  

 

Figure 7: Schematic overview of the microchip platform from Forslund's 
experiment 
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The advantages of this deep wells are that they ensured entrapment of cells in the wells 

while providing sufficient nutrients for prolonged experiments (>4 days). On another study 

by Vanherberghen et al., also from the Onfelt group, they further categorized NK cells into 

five subgroups based on dynamic cytotoxicity using time-lapse microscopy on a micro-

chip system (53). The majority of NK cells were found to not be involved in any cytotoxic 

events, whereas some of the minority was found to be involved in the death of the majority 

of the target cells. Importantly, a small subset of NKC called “serial killers” was shown to 

deliver their lytic hits of multiple targets faster and in a consecutive manner. These results 

further highlight the heterogeneity of immune cells and showcases that averaging 

functional responses over the whole spectrum may not capture the whole picture. Ideally, 

understanding the contribution of individual cells may potentially help design future 

regimen for immune cells infusion in adoptive immunotherapy. 

Sackmann et al. on another studies proposed a handheld diagnostic microfluidic-

based platform to look at neutrophil chemotaxis for distinguishing asthmatic from non-

asthmatic patients (54). Briefly, whole blood from patients was suspended on the “base” 

of microfluidic chips, and neutrophils were captured by P-selectin substrate and other 

components were removed with laminar flow wash steps. The “base” was hybridized with 

the “lid” containing hydrogel chemoattractant mixture (H-CA) which initiated the 

neutrophil chemotaxis. Images were then taken, and the chemotaxis data were tracked and 

analyzed with software to generate outputs that describe the neutrophil absolute speed, 

chemotactic index, and chemotactic velocity. Sackmann et al. analyzed 34 patients with 

this platform and found that the neutrophil chemotaxis velocity was determined to be 

significantly slower for asthmatic vs. non-asthmatic patients with sensitivity and specificity 
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of 96 % and 73 % respectively. Overall, this assay demonstrated how microfluidics can 

potentially serve as suitable platform to look at migration of immune cells, and in this case, 

a significant time-saving assay compared to traditional diagnostics assay. 

1.3.3. Dielectrophoresis-based array (DEPArray) 

Abonnenc et al. described a software-based lab-on-a chip platform of 

dielectrophoresis-based array (DEPArray) combined with time-lapse epifluorescence 

microscopy to manipulate cells interactions by entrapment through DEP cages and monitor 

lysis –on-chip of single target cells by cytotoxic T lymphocyte (CTL) and NK cells (55). 

Briefly, DEP system utilized interdigitated electrode arrays to generate DEP forces that 

decay exponentially from the surface, thus allowing for force manipulation of cells in a 

non-uniform electric field. 

 

Figure 8: Step-wise targeting of a single target by effector on DEPArray. 
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In this study, they assess cytotoxicity by real-time quantitation of release of calcein 

dye from target cells and also further showed that this technique can be used to discriminate 

non-lytic effectors and refractory target to immune lysis in a heterogeneous population 

(Figure 8, reproduced and captioned from (55), with permission from the Royal Society 

of Chemistry). While DEP arrays are extremely useful for spatial micromanipulation of 

cells with high trapping efficiencies, it may be challenging when it comes to 

simultaneously maintenance of cell patterning and microenvironment.    

1.4. Single-cell system for proliferation, activation, and differentiation assays 

 Long term monitoring of immune cells represents a critical and challenging part of 

understanding the dynamic heterogeneous population, where immune cells have often been 

lost in the process, either through the perturbation of the microenvironment or the tendency 

of cells to move in or out of confinement given enough stimuli. In a study by Zaretsky et 

al., they designed deep microwells based on combination of PDMS arrays and standard 

culture plate to monitor single-cell proliferation, activation, and differentiation up to 72 hrs 

(Figure 9, reproduced and captioned from (56), copyright owned by).  

 

Figure 9: Microwell array fabrication and cell loading in Zaretsky’s setup 
Specifically, CD4+ T cells were loaded onto microwells along with activation 

microbeads (anti-CD3/anti-CD28) and quantitative data on proliferation and deaths were 
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calculated. CD69 expression, which is upregulated upon activation of the CD4+ T cells by 

microbeads, is detected by PE-conjugated anti-CD69. Furthermore, they showed that this 

platform can be used to study differentiations of immune cells. In this case,  naïve CD4+ T 

cells with Foxp3-GFP fusion that are isolated from mice expressed Foxp3  upon addition 

of proper stimulation molecules i.e., transforming growth factor beta (TGFβ) and 

interleukin 2 (IL-2).  

On a separate study, Dura et al. designed a microfluidic platform with trap-like 

geometry in order to force single-cell pairing, thus allowing studies of cell-cell interactions 

(57). Combining the microfluidics with microscopy and on-chip fixing, they specifically 

studied lymphocyte activation and showed dynamic and static measurements to inform on 

cell intrinsic and extrinsic factors on cellular responses. Activation of OT-1 specific CD8+ 

T cells were shown through calcium (Ca2+) flux and three different modes of stimulations 

i.e., antigen specific stimulation by peptide loaded B cells, antibody based stimulation by 

anti-CD3/anti-CD28 beads, and chemical stimulation with ionomycin. In addition, the 

group also showed sequential activation modes in which trapped single cells were exposed 

to sequential stimulation condition of antigen peptides with varying TCR affinity followed 

by ionomycin stimulation. Based on the tracking of the cell response histories, they binned 

the T cells as double responders, single responder (respond only to ionomycin), and no 

responder.  

With the advances in technology, many new and superior techniques become 

available to us for thorough interrogation of immune cells. As we move from population 

level analysis into more specialized and personalized ones, there is an urgent need for more 

single-cell technology that can profile phenotypic, functional, and molecular biomarkers 
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in high throughput manners. The single-cell technology nowadays, however have targeted 

and limited utility when it comes to combinatorial profiling. For example, some single-cell 

technologies as described above can only detect protein secretion or quantify cytolytic 

efficacy. There is therefore a need to design a platform that can perform multiplexed 

interrogation of single-cell, in order to obtain a more complete picture of immune cells’ 

capability and polyfunctionality. On this dissertation, we discussed our TIMING 

technology to look at single-cell cytolysis, motility, and interactions, and combined it with 

beads assays and microfluidics qPCR to further look at protein secretion and molecular 

signature of single-cell. This combinatorial approach can potentially bring forth a deeper 

understanding of immune cells, and may help design new approaches for future clinical 

trials. 
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CHAPTER 2 

Individual motile CD4+ T cells can participate in efficient multi-killing through 

conjugation to multiple tumor cells  

Note : This is a reformated version of a manuscript accepted at Cancer Immunology 

Research 

Liadi, I., H. Singh, G. Romain, N. Rey-Villamizar, A. Merouane, J. R. Adolacion, P. 

Kebriaei, H. Huls, P. Qiu, B. Roysam, L. J. Cooper, and N. Varadarajan (2015). 

Individual Motile CD4+ T Cells Can Participate in Efficient Multikilling through 

Conjugation to Multiple Tumor Cells. Cancer Immunol Res 3: 473-482. 

 

2.1. INTRODUCTION 

Chimeric antigen receptors (CARs, check abbreviation and definition sections) are 

hybrid molecules that typically combine the specificity and affinity of single-chain 

antibodies with selected intracellular signaling domains of the T-cell receptor (TCR) 

complex (58-60). When expressed on genetically modified T cells, CARs redirect 

specificity independent of human leukocyte antigen (HLA) to recognize tumor-associated 

antigens (TAAs). Second and third generation CARs include the endodomains for co-

stimulatory molecules and can thus directly endow the different signals needed for T-cell 

activation upon binding TAA (61). Initial data from clinical trials at multiple centers 

reporting the adoptive transfer of T cells genetically modified to express a CD19-specific 

CAR for the treatment of B-cell malignancies are encouraging, with patients benefiting 

from complete remissions (62-64). These clinical results have accelerated the clinical 

translation of T cells bearing CARs targeting TAAs other than CD19 for the treatment of 
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hematologic malignancies as well as solid tumors (65-67). As a group, these clinical trials 

differ in the design and specificity of the CARs, the ex vivo approach used to manufacture 

the T cells, the in vivo regimen used to pre-treat the recipient, the tumor burden and type, 

and the T-cell dosing scheme. Thus, drawing conclusions regarding the relative anti-tumor 

effects between the populations of bioengineered CAR+ T cells is not readily feasible1. One 

of the hallmarks of a therapeutically successful infusion is the presence of CAR+ T cells 

that can persist to execute multiple tumor cells within the tumor microenvironment (68).  

In spite of the recent success of adoptive immunotherapy, the mechanistic basis for 

the potency of a given T-cell product has not been well defined. The majority of adoptive 

studies have focused on infusing CD8+ T-cell populations because of their ability to 

directly recognize and lyse tumor cells, thus mediating antitumor immunity (69). In the 

absence of CD4+ T-cell help however, some infused CD8+ T cells can become functionally 

unresponsive and undergo apoptosis (70). Indeed, adoptive cell therapy (ACT) protocols 

that incorporate CD4+ T cells may mediate superior responses, and preclinical and clinical 

data have established the importance of CD4+ T-cell help during immunotherapy (71, 72). 

More recently however, adoptive transfer of CD4+ T-cell populations has shown that these 

cells can mediate regression of established melanoma, and that these cells can differentiate 

into cytolytic effectors (73-75). Despite these advances direct comparisons of the potency 

and kinetics of interactions between donor-derived populations of CD4+ T cells and tumor 

cells at single-cell resolution, and the comparison to CD8+ T cells is lacking. 

Although two-photon microscopy studies are well suited for understanding the 

mechanistic basis of T-cell tumor cell interactions in vivo, direct observation of killing and 

motility is restricted to tens of events that may lead to sampling bias. Additionally, these 
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studies are limited in throughput and cannot be used to routinely determine the interactions 

between cellular infusions and tumor cells. In vitro dynamic imaging (53, 76-80) systems 

are well-suited for studying the longitudinal interactions between cells at single-cell 

resolution, in a defined environment. Here, we have employed Timelapse Imaging 

Microscopy In Nanowell Grids (TIMING) to analyze the longitudinal interactions between 

individual CD19-specific T cells (effectors, E) expressing a second generation CAR with 

one or more CD19+ tumor cells (target(s), T). To the best of our knowledge, we 

demonstrate for the first time that CD4+CAR+ T cells (CAR4 cells) can directly engage in 

multi-killing via simultaneous conjugation to multiple tumor cells. The major differences 

between CAR4 and CD8+ CAR+ T cells (CAR8 cells), at the single-cell, in mediating 

tumor-cell lysis in vitro, was the kinetics of killing, and this was attributed to the 

differences in their intracellular Granzyme B (GzB) content. Surprisingly, in both sets of 

T cells, a minor sub-population of individual T cells identified by their high motility, 

demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and 

single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis 

was modulated by the number of functional conjugations. Our results demonstrate that the 

ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of 

their ability to resist AICD.  

2.2. METHODS 

2.2.1. Human subjects statement. All work outlined in this report was performed 

according to protocols approved by the Institutional Review Boards at the University of 

Houston and the University of Texas M.D. Anderson Cancer Center. 
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2.2.2. Cell lines and antibodies. All antibodies were purchased from Biolegend (San 

Diego, CA). Human pre-B cell line NALM-6 (ATCC), Daudi-β2m (ATCC), T-cell 

lymphoma EL-4 (ATCC) and modified CD19+EL-4 cells were cultured as described 

previously (81, 82). The cell lines were routinely tested to ensure that they were free of 

mycoplasma contamination and flow-cytometry was utilized to confirm the expression of 

CD19.  

2.2.3. Genetic modification and propagation of cells: PBMC from healthy volunteers 

were electroporated using Nucleofector II (Amaxa/Lonza) with DNA plasmids encoding 

for second generation CAR (designated CD19RCD28) and SB11 transposase and co-

cultured with γ-irradiated K562 aAPC (clone 4) for 28 days along with cytokines (IL-2 and 

IL-21) in a 7-day stimulation cycle as described previously (81). For single cell analysis, 

frozen CAR+ T cells were revived and re-stimulated with irradiated K562 aAPC before 

using them in experiments.  

2.2.4. Flow cytometry: Cells were stained for cell surface markers (CAR, CD4, CD8, 

CD3), fixed and permeabilized (Cytofix/Cytoperm, BD Biosciences) for 20 min at 40C. 

Cells were subsequently stained for intracellular granzyme B in perm/wash buffer at 40C 

for 30 min, acquired on a FACS Calibur, and analyzed using FCS Express/FlowJo as 

previously described (81). Statistical analyses for determining GzB expression were 

performed within R. 

2.2.5. End-point cytotoxicity assay. Nanowell array fabrication and the corresponding 

cytotoxicity assay to interrogate effector-target interaction at single-cell level were 

performed as described previously (78). Briefly, CAR+ T cells labeled for 5 minutes with 

1 µM of red fluorescent dye, PKH26 (Sigma) and target cells labeled for 5 minutes with 1 
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µM of green fluorescent dye PKH67 were co-loaded onto nanowell arrays at a 

concentration of 106 cells/mL. Images were acquired on a Carl Zeiss Axio Observer fitted 

with a Hamamatsu EM-CCD camera using a 10x 0.3 NA objective. Automated image 

acquisition of the entire chip was performed at 0 and 6 hour and apoptosis was identified 

by staining with AnnexinV conjugated to Alexa-647 (Life Technologies, Carlsbad, CA).  

2.2.6. TIMING assays. Nanowell grids were fixed in position on a 60 mm petridish. The 

cells were labeled and loaded exactly as described for the end-point assay and imaged on 

a Zeiss Axio Observer using a 20x 0.45 NA objective. Images were acquired for 12-16 

hours at intervals of 7-10 minutes.  

2.2.7. Statistical analysis. P-values were calculated using GraphPad Prism software and 

asterisks were assigned as follows: * P<0.05, ** P< 0.01, *** P< 0.001, and **** P< 

0.0001 

2.2.8. Flow cytometry based cytotoxicity assay: CAR4 cells (1x106 cells) were incubated 

with CD19+ target cells (0.2x106 cells; Daudiβ2m, NALM-6, CD19EL-4) at E:T ratio of 

5:1 in the presence or absence of 5mM EGTA in 24-well plates in 5% CO2 at 37°C for 6 

hours.  Following incubation cells were stained for CD3 (T cells) and CD19 (tumor 

targets), acquired on a FACS Calibur (BD Biosciences) and analyzed using FCS Express 

version 3.00.007 (Thornhill, Canada). 

2.2.9. Image processing and cell segmentation: In order to permit accurate computation 

of cell displacements despite camera and stage movements, the individual nanowells were 

detected automatically with >99% accuracy by correlating pre-constructed shape 

templates at the expected range of orientations and magnification values. The correlation 
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value is a maximum at the well centers, and these points are detected using a local maxima 

clustering algorithm. The cells in each image channel are analyzed automatically using a 

3-step method (83). First, each pixel is stratified as bright foreground, intermediate 

foreground, and dark background based on modeling image intensities as a mixture of 

three Gaussian distributions. The foreground pixels are subjected to multi-level 

thresholding (we used 10 equally-spaced levels between the maximum and minimum 

foreground intensity values). The cell centers are detected using a local maxima clustering 

on the average of Euclidean distance maps computed at each threshold. Using these cell 

centers, the image foreground is partitioned into individual cell regions using the 

normalized cuts algorithm, allowing cell sizes and shapes to be quantified. Spectral 

overlap between the dyes used under the imaging conditions were eliminated during image 

processing through our automatic “unmixing” process, and this is performed 

independently for each set of experiments. In addition, the segmentation scripts calculate 

an integrated fluorescence intensity by averaging on all the pixels associated with a given 

cell and thus eliminated any ambiguity in effector/target classification due to the diffusion 

of dyes across the cell membrane during contact.  

2.2.10. Cell tracking: The detected cells, denoted 𝐶𝐶𝑖𝑖=1..𝑁𝑁
𝑡𝑡=1…𝑇𝑇, where 𝑁𝑁 is the number of cells 

in the well and 𝑇𝑇 is the number of frames, are tracked from frame to frame using a graph-

theoretic edge selection algorithm on a directed graph where cells correspond to vertices 

and edges represent temporal association hypotheses (84). The association cost for each 

edge 𝑓𝑓𝑖𝑖,𝑗𝑗𝑡𝑡  between object 𝑖𝑖 at time 𝑡𝑡 and object 𝑗𝑗 at time 𝑡𝑡 + 1 is calculated based on cell 

location and size. The temporal correspondences are identified using an integer 

programming algorithm that maximizes the total association cost subject to constraints to 
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ensure that each cell in a given frame is associated with a maximum of one cell in the 

subsequent frame, and vice versa. 

2.3 RESULTS 

2.3.1 Production and phenotype of CAR+ T cells: Genetically modified and propagated T 

cells were generated from the peripheral blood mononuclear cells (PBMC) of healthy 

volunteer donors derived using the Sleeping Beauty (SB) system (85) to enforce expression 

of a second generation CD19-specific CAR (designated CD19RCD28) that activates T 

cells via a chimeric CD3 and CD28 endodomain (Figure 10).  

 

Figure 10: Schematic of second-generation CD19-specific CAR 
(CD19RCD28) that signals through chimeric CD28/CD3-ζ 

Subsequent to expansion, CAR+ T cells from two separate donors contained predominantly 

CD8+ T cells (Figure 11). 
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Figure 11: Phenotypic characterization of the CAR+ T cells from two 
separate donors.  

The approach to producing the CAR+ T cells mirrors our manufacture in 

compliance with current good manufacturing practice for human application (Figures 12 

and 13). Briefly, peripheral blood mononuclear cells (PBMC) were electroporated with 

plasmids encoding for the Sleeping Beauty (SB) transposase and the transposon containing 

the CAR. The electroporated cells were subsequently expanded by co-culture with K562-

derived artificial antigen presenting cells (aAPC) modified to express CD19, CD64, CD86 

and CD137L, in the presence of exogenous IL-21 and IL-2. CD19RCD28 T cells showed 

>104 fold expansion in culture over a period of 4 weeks. Inferred cell counts were 

calculated assuming all viable cells were carried forward through each stimulation cycle. 

The error bars represent standard deviation from three independent measurements. 
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Figure 12: Genetic modification and expansion of CAR+ T cells. 

 

Figure 13: Representative data from a single donor showing expansion of 
CAR+ T cells on aAPC in the presence of soluble IL-21 and IL-2.  
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2.3.2 The cytotoxic potential, specificity and multi-killing ability of individual CAR+ T 

cells: Donor-derived CAR+ T-cell populations were evaluated for their ability to lyse 

CD19+EL4 target cells, by co-culture within nanowell grids (Figures 14 and 15). Labeled 

effectors and target cells are loaded onto a nanowell array (~85,000 individual wells, 125pL 

each well) to enable monitoring of T-cell function at the single-cell level. Subsequent to 

loading and washing steps, the entire chip is immersed in cell-culture media containing 

AnnexinV. A pre-image is acquired on the microscope to determine the occupancy of every 

single nanowell and to exclude cells dead at the start of the assay. 

 

Figure 14: Representative composite micrographs illustrating the ability of 
single CAR+ T cells to kill, and to undergo apoptosis, when 
incubated with tumor cells. Scale bar 50 µm. 

The array is then transferred to the incubator for 6 hours to enable cell-cell 

interactions and a second post-image is acquired. In house image segmentation programs 

are used to automatically process the images and database matching is employed to 

determine killing. In parallel, a separate nanowell array is loaded with targets only to 

determine the death rate in the absence of effectors, over the same period of time. The 
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killing assay results are corrected for the background killing rate determined by the target 

only arrays. 

 

Figure 15: High-throughput cytotoxicity assay for monitoring T-cell target 
cell interactions in nanowell grids. 

At an E:T of 1:1, averaged across both donors, 29% of single CAR+ T cells induced 

apoptosis of  (number of events, Ntotal  = 4,048) CD19+EL4 cells within six hours, whereas 

they induced apoptosis of just 1% (Ntotal = 3,682) of CD19-EL4 cells in the same time 

frame. The >29-fold increase of lysis of CD19+ versus CD19- targets confirms TAA-

specific lysis (Table 1, p-value <0.0001, Fisher’s 2x2 test). In parallel, a conventional 4-

hour 51Chromium release assay (CRA) was performed at the same E:T ratio (1:1) and 

reported a similar overall magnitude of target cells killing (mean 14-fold increase of lysis 

of CD19+ versus CD19-EL4 cells), albeit without single-cell resolution (Table 1).  
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Table 1: Comparison of the cytolytic responses measured by the single-cell 
assay and population-level 51Cr release assay, at an E:T ratio of 1:1. 
The numbers in parentheses report the total number of events 

 

The ability to redirect specificity to lyse human CD19+ tumor cells was confirmed using 

the pre-B cell line NALM-6 (Figure 16).  

 

Figure 16: CD19 expression on NALM-6 tumor cells or CD19+EL4 target cells 
as determined by immunofluoresecent staining. The parental EL4 
cell line was used as a negative control (black lines). 

When averaged across both donors, within six hours of observation, individual 

CAR+ T cells induced apoptosis in 34% (Ntotal = 3,503) of NALM-6 target cells at an E:T 

ratio of 1:1. Across all of the samples tested, single cell assay demonstrated a linear 

correlation to the CRA (Table 1, r2 = 0.84, p-value = 0.01). The ability of individual T 

cells to eliminate more than one target cell was quantified by analyzing nanowells 

containing multiple targets (Table 2). The tumor-cells are colored red, the CAR+ T cells 



40 
 

are labeled blue with an artificial white exterior. Killing is determined by the colocalization 

of Annexin V staining (green) on red target cells. Scale bar 50 µm. 

Table 2: Composite micrographs illustrating representative examples of the 
interactions between single CAR+ T cells (E) and one or more 
NALM-6 tumor (T) cells. 

 

Averaged across both donors, at an E:T ratio of 1:2, within six hours, 21% (Ntotal = 2,294) 

of single CAR+ T cells killed exactly one CD19+EL4 target-cell whereas 23% killed both 

targets (Figure 17). During this same timeframe, at an E:T ratio of 1:3, 22% (Ntotal = 1,108) 

of single CAR+ T cells killed exactly one target, 22 % killed exactly two targets, and 9%  

killed all three targets (Figure 17).  
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Figure 17: Donut plots summarizing the frequency of killing outcomes of the 
interaction between CAR+ T cells, derived from these two donors, 
and CD19+EL4 target cells. 

Thus, within a defined observation window, the likelihood that an individual CAR+ 

T cell killed more than one tumor cell improved as the number of targets within the 

nanowell increased but this might simply reflect higher frequency of interactions at higher 

cell densities (Figure 18). 

 

Figure 18: Comparisons of the observed killing frequencies at an E:T ratio of 
1:2, and theoretical frequency, defined as the square of the 
frequency of killing 
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 These findings were also observed when substituting NALM-6 as target cells, albeit with 

diminished frequency of multi-killing after 6 hours of co-culture (Figure 19). 

 

Figure 19: Donut plots summarizing the outcomes of the interaction between 
individual CAR8 cells and 1-3 CD19+–NALM-6 tumor cells. 

 In aggregate, these data demonstrate that the responses measured by the single-cell assay 

are consistent with the results of CRA, and that multi-killer CAR+ T cells (ability to lyse 

at least two targets) comprised 20% (Ntotal = 3,402) of the CAR+ T-cell population. 
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2.3.3. Motile CD8+ cytotoxic T cells are efficient killers with decreased potential for 

activation induced cell death (AICD)  

            In order to gain an improved mechanistic understanding on the interaction between 

individual CAR+ T cells and NALM-6 tumor cells, we developed and implemented 

TIMING (Figure 20).  

 

Figure 20: Timelapse Imaging Microscopy In Nanowell Grids (TIMING). 
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PDMS nanowell arrays (64 pL each nanowell) are fabricated to bond a 60mm petridish. 

Labeled effectors and targets are loaded onto the nanowell array and the entire chip is 

immersed in cell-culture media containing fluorescent Annexin V. At least 6,000 nanowells 

are imaged every 7-10 minutes on the microscope for a total of 12-16 hours. Subsequently, 

an integrated pipeline within FARSIGHT is implemented to automatically enable well 

detection, image preprocessing and cell segmentation, tracking and feature computation. 

The images are fragmented such that each nanowell represents a single time series file. 

When analyzing time series data, only nanowells that yielded the exact same number of 

effectors and targets in >95% of time points were carried forward for analysis. Finally, the 

data is presented as time-series plots for each well along with the associated cell feature 

graphs.  

Six parameters describing T-cell intrinsic behavior motility (dWell) and aspect ratio of 

polarization (AR), conjugation (contact lasting >7 minutes, tSeek and tContact), and death 

(tDeath and tAICD) were computed to define each interacting pair of effector and tumor cell 

(Figure 21-23). 

 

Figure 21: Schematic depicting tseek, tcontact, and tdeath.  Red bar indicates 
periods of conjugation. 
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Figure 22: Aspect ratio of polarization describes the ratio of major and 
minor axis fitted to an ellipse. 

 

 

Figure 23: dWell represents the average displacement of the centroid of the 
effector cell between successive seven minute time points. 

 

            At an E:T of 1:1, 77 % (Ntotal = 268) of single CD8+CAR+ T cells (CAR8 cells) that 

made at least one conjugate were able to kill the engaged leukemia cell. In order to identify 

subgroups of T cells that exhibited different behavioral interactions with the tumor cells 

leading to subsequent killing, the time series data for each of three features, total duration 

of conjugation, dwell and AR, underwent hierarchical clustering (Figure 24) (86).  
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Figure 24: Identification of subgroups of killer CAR8 cells based on their 
motility and contact behavior with tumor cells at E:T of 1:1. 

  The time series of the contact pattern of CAR8 cells in their interaction with 

NALM-6 cells was clustered using K-means clustering (Euclidean distance, complete 

linkage) to identify low and high contact duration subsets. The displacement (dwell) of the 

CAR8 cells was independently clustered to yield two or three subsets using K-means 

(Euclidean distance, complete linkage). Since these are features of the same cells, 

Caleydo was used to visualize the linkage between the clusters (gray cables) at single-cell 

resolution. The frequency of each of the three subsets, S1-S3, is highlighted in orange. 
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             Three T-cell subgroups were described that collectively accounted for 70% of the 

single-killer CAR8 cells: S1 (14% [7-20%], range), low conjugation and high motility; S2 

(49% [32-66%]), high conjugation and low motility; and S3 (21% [19-22 %]), low 

conjugation and low motility (Figure 24). The high-motility subgroup, S1, comprised 

predominantly of elongated T cells that had an initial “lag-phase” (tSeek 184±38 minutes, 

Mean±SEM), but formed stable conjugates (tContact 98±13 minutes) prior to target apoptosis 

(tDeath 204±35 minutes) (Figures 25 and 26). On the figures, Each circle represents a single 

cell. P-values were computed using parametric one-way ANOVA. (* P<0.05, ** P< 0.01, 

*** P< 0.001, and **** P< 0.0001) 

 

Figure 25: Mean motility, time to first conjugation, and killing efficiency of 
single CAR8 cells three different subgroups.  



48 
 

 

Figure 26: At an E:T of 1:1, the total duration of conjugation prior to 
NALM-6 tumor cell killing is no different for the CAR8 cells in 
the different subgroups. 

             Predominantly, these T cells exhibited a decrease in motility and increased 

circularization (Figure 27) during tumor-cell conjugation, detached after tumor-cell death, 

resumed normal migratory function and had only a low frequency of effector cells 

undergoing AICD (Figure 28). On Figure 18 and 19, each circle represents a single-cell 

and the horizontal black line designates the mean of the population. P-values were 

determined using a pairwise two-tailed t-test on both figures (S1 were excluded from 

analysis in Figure 19 due to low number of apoptotic effectors).   
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Figure 27: At an E:T ratio of 1:1, CAR8 cells in the S1 subgroup, 
demonstrate drop in motility and increased circularization upon 
conjugation to NALM-6 tumor cell. 

 

Figure 28: At an E:T ratio of 1:1, CAR8 cells in the different subgroups 
demonstrate different frequencies and kinetics of AICD 
subsequent to the interactions with NALM-6 cells. 
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            The representative cell in the dominant subgroup, S2, established conjugation 

quickly (tSeek 36±6 minutes), and displayed sustained conjugation (tContact 145±16 minutes) 

prior to killing (tDeath 158±18 minutes) (Figures 25). The majority of these T cells did not 

detach or resume migratory function after tumor-cell lysis, retained a predominantly 

circular morphology, and continued to remain conjugated >10 hours, even subsequent to 

the death of the conjugated tumor-cell. Moreover, 88% of S2 effector cells underwent 

apoptosis within the first ten hours of observation (Figure 28). Finally, T cells in the S3 

subgroup were rapid killers (tContact 84±8 minutes and tDeath 118±20 minutes) that arrested 

after conjugation but failed to resume migration after tumor-cell detachment/killing 

(Figure 25). Although these S3 effectors detached from tumor-cells after delivering the 

lethal hit, 53% then underwent apoptosis (Figure 28).  Taken together these results 

demonstrate that at an E:T ratio of 1:1, the dominant subgroup of cells, S2, identified by 

their lack of motility and early conjugation to tumor cell, underwent AICD. On the 

contrary, highly motile CAR8 cells, S1, detached efficiently and resumed exploration of 

the local microenvironment, indicating that the motility of CAR8 cells might help identify 

efficient killers with decreased propensity for AICD. The observation that the majority of 

the CAR8 cells (S2 subgroup) maintained extended contact even after the death of the 

tumor cell is consistent with investigations on HIV-specific CTLs (87). 

2.3.4. CAR8 cell motility at increased tumor-cell densities facilitates multiplexed killing: 

The efficacy of CAR+ T cells to eliminate tumor burden in excess of the number of effectors 

infused is due to their ability to persist and participate in serial killing(68). To facilitate 

identification of multi-killers, we next profiled the interactions in nanowells containing a 

single CAR8 cell and 2 to 5 NALM-6 tumor cells (E:T 1:2-5). The frequency of CAR8 
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cells that were able to simultaneously conjugate to two or more tumor cells increased from 

25% to 49% as the number of targets within the nanowell increased, indicating that 

multiplexed killing might be important (Figure 29). 

 

Figure 29: Distribution of the number of simultaneous conjugations of 
individual CAR8 cells when incubated with increasing number of 
NALM-6 tumor cells. 

The frequency of simultaneous tumor conjugates that result in tumor cell deaths (46% [43-

50%]) was not very different from true serial killers that attach, kill, detach and attach to a 

different tumor cell (49% [44-53%]), suggesting that CAR8 cells are capable of eliciting 

either mode of killing, likely dependent on tumor cell density. Individual multi-killer 

CAR8 cells (Ntotal = 70) demonstrated only a small decrease in motility when conjugated 

to one tumor cell but showed no significant change in motility upon conjugation to multiple 

tumor cells (dWell(unconjugated): 5.9±0.5 µm vs dWell (single target): 4.6±0.3 µm vs dWell 

(two targets): 4.7±0.3 µm) (Figure 30).  
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Figure 30: The mean motility of individual multi-killer CAR8 cells. P-values 
for multiple comparisons were computed using parametric one-
way ANOVA. 

The only difference for multi-killers when contacting the different tumor cells was in their 

time to establish conjugates (tSeek Target1: 18±4 minutes vs Target2: 98±13 minutes, Figure 

31).  

 

Figure 31: The mean time to first conjugation of individual multi-killer 
CAR8 cells. P-values for multiple comparisons were computed 
using parametric one-way ANOVA. 
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Both, duration of conjugation (tContactTarget1: 101±9 minutes vs Target2: 113±15 minutes) 

and killing efficiency (tDeathTarget1: 156± 17 minutes vs Target2: 177±24 minutes) were no 

different (Figure 32 and 33).  

 

Figure 32: The mean killing efficiency of individual multi-killer CAR8 cells. 
P-values for multiple comparisons were computed using 
parametric one-way ANOVA. 

 

Figure 33: At an E:T ratio of 1:2-5, multi-killer CAR8 cells demonstrate no 
significant differences in their duration of conjugation prior to 
killing multiple NALM-6 tumor cells. 
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In addition to contact duration, the number of CAR8 cell tumor cell conjugations that lead 

to killing during encounter with the first tumor cells (61% both donors) was also not 

significantly different from the number of conjugations that resulted in target cell killing 

during encounter with the second tumor cell (74% [70-79 %]). These TIMING data suggest 

that the efficiency to kill a second tumor cell is largely unaffected by the hit on a first target 

(p-value >0.99). Furthermore, in comparison to single killer CAR8 cells, multi-killer 

CAR8 cells displayed greater motility when conjugated to the tumor cell despite the 

increased crowding because of higher tumor cell density, (Figure 34).  

 

Figure 34: Multi-killer CAR8 cells displayed greater motility when 
conjugated to tumor cell in comparison to single-killer CAR8 cells 
that encountered only a single tumor cell despite wells crowding. 



55 
 

2.3.5. Motility can identify a subgroup of CAR4 cells with enhanced cytotoxic efficiency. 

We have previously reported that the culture of CAR+ T cells in the presence of IL-2 and 

IL-21 on aAPC can lead to outgrowth of CAR4 cells with cytotoxic potential (81). In order 

to facilitate comparisons to CAR8 cells, and to demonstrate that CAR4 can directly 

participate in killing and multi-killing, the interaction of individual CAR4 cells from two 

donor-derived populations (Figure 35), with NALM-6 tumor cells were profiled using 

TIMING.  

 

Figure 35: Phenotypic characterization of the CAR+ T cells from two 
separate donors that comprise of predominantly CD4+CAR+ T 
cells. 

At an E:T ratio of 1:1, 55% (Ntotal = 549) of single CAR4 cells that conjugated to a NALM-

6 cell subsequently killed the tumor cell. As with the CAR8 cells, the interaction behavior 

of CAR4 cells with the NALM-6 cells could be classified into three subgroups, S1-S3 

(Figure 36).  
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Figure 36: At an E:T ratio of 1:1, identification of subgroups of killer CAR4 
cells based on their motility and contact behavior with tumor cells 

CAR4 cells in the enhanced motility subgroup, S1 (11% both donors), displayed 

significantly faster kinetics of tumor cell death (tDeath 157±17 minutes) compared to the 

dominant S2 (34% [31-36 %]) subgroup (tDeath 318±23 minutes, Figure 37-39).  

 



57 
 

 

Figure 37: The mean motility of single CAR4 cells in each of three different     
subgroups. 

 

 

Figure 38: The mean killing efficiency of single CAR4 cells in each of three 
different subgroups. 
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Figure 39: Comparison of the means of the killing efficiencies between single 
CAR8 and CAR4 cells within the S1 subgroups. 

This increased kinetic efficiency was consistent with the decreased conjugation time 

required by the S1 subgroup of cells (tContact 122±11 minutes) in comparison to the S2 

subgroup (tContact 300±21 minutes) (Figure 40). 

 

Figure 40: At an E:T of 1:1, the total duration of conjugation prior to 
NALM-6 tumor cell killing is significantly longer for CAR4 cells 
in S2 subgroup in comparison to subgroups S1 and S3. 
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These results suggest that similar to CAR8 cells, the motility of the CAR4 cells may help 

identify the most efficient killers.  

2.3.6. Both single-killer and multi-killer CAR4 cells required longer conjugation and 

demonstrated delayed kinetics of killing in comparison to CAR8 cells.  

At the E:T ratio of 1:1, comparisons of the killing efficiency of CAR4 cells (tDeath 284±11 

minutes) and CAR8 cells (163±12 minutes) demonstrated that individual CAR4 cells on 

average required two extra hours to induce tumor cell death (Figure 41).  

 

Figure 41: Comparative Kaplan –Meier estimators depicting the differences 
in killing efficiencies of the entire population of CAR4 cells and 
CAR8 cells. 

Consistent with the observation that the S2 subgroup is the dominant population of CAR+ 

T cells, CAR4 cells in the S2 subgroup (tDeath 318±23 minutes) demonstrated delayed 
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kinetics of killing in comparison to CAR8 cells within the S2 subgroup (tDeath 158±18 

minutes) (Figure 42). 

 

Figure 42: At an E:T of 1:1, CAR4 cells in S2 subgroup induce apoptosis in 
tumor cells with delayed kinetics in comparison to CAR8 cells in 
the S2 subgroup. 

            As mentioned above, since the motility of CAR4 cells could be used to identify the 

most efficient killers (Figure 38), comparisons of the kinetic efficiency of  CAR4 cells in 

the S1 subgroup (tDeath 157±17 minutes) with CAR8 cells in the S1 subgroup (tDeath 204±34 

minutes) demonstrated no significant differences. This further supports the notion that 

motility might be a useful parameter in identifying efficient cytolytic CAR+ T cells. 

Comparisons of the single-cell behavioral interactions of multi-killer CAR4 cells (Ntotal = 

78) with the CAR8 cells demonstrated that most features were conserved across cells of 
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both phenotypes. First, the unconjugated motility of CAR4 cells (dwell 6.9±0.5 µm) was no 

different than CAR8 cells (dwell 5.9±0.5 µm, Figure 43).  

 

Figure 43: Comparisons between the mean motility of single multi-killer 
CAR8 cells and CAR4 cells. 

Second, like CAR8 cells, CAR4 cells demonstrated a matched decrease in motility (Figure 

43) and increased circularization when conjugated to one or more tumor cells (Figure 44). 
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Figure 44: At an E:T ratio of 1:2-5, multi-killer CAR4 cells demonstrate 
increased circularization upon contact with one or more NALM-6 
tumor cells. 

Third, the preferred contact mode of the multi-killer CAR4 cells was also simultaneous 

conjugations to multiple tumor cells (Figure 45). 

 

Figure 45: The ability of individual CAR4 cells to simultaneously conjugate 
to multiple NALM-6 tumor cells increases as the number of 
tumor cells within the nanowell increases. 
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            Fourth, simultaneous conjugates that result in killing accounted for 61% [60-63%] 

of multi killing events, indicating that this is an important mode of killing intrinsic to T cells 

and not just CD8+ T cells. Fifth, comparisons of tDeath for the different tumor cells killed by 

individual multi-killer CAR4 cells demonstrated no differences (Figure 46).  

 

Figure 46: Comparisons between the mean killing efficiency of single multi-
killer CAR8 cells and CAR4 cells. 
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            Lastly, the number of CAR4 cell tumor cell conjugations that lead to killing during 

the first tumor cell encounter (60% [58-61 %]) is not significantly different from the 

number of contacts that leads to killing when encountering the second tumor cell (60% [57-

63 %]), suggesting that the killing efficiency is unchanged.  

            Consistent with the observations at an E:T of 1:1, multi-killer CAR4 cells required 

extended conjugation (tContact 214±18 minutes) and demonstrated slower kinetics prior to 

killing the first tumor cell (tDeath 310±23 minutes) in comparison to CAR8 cells (Figure 

46). In aggregate, these results demonstrate that the major difference in CAR4 cells and 

CAR8 cells participating in either single killing or multi-killing is the kinetics of tumor cell 

death. 

2.3.7. Intracellular GzB content can explain differences in killing efficiency.  

            To test the hypothesis that the varying efficiencies both between cells of the same 

population and in comparing CAR4 cells with CAR8 cells might be due to differences in 

expression of cytotoxic enzymes, we employed intracellular staining at the single-cell level 

using flow cytometry to identify the expression GzB within these cells. To establish 

baseline controls, the intracellular GzB content of CD3+CD4+ cells (2.36±0.01) and 

CD3+CD8+ cells (3.89±0.04) in PBMC of two separate donors was determined (Figure 

47).  

             CAR4 cells (from donors PB5858 and PB333038) and CAR8 cells (from donors 

PB243566 and PB281848) were profiled using mAb against CD4/CD8/CAR and GzB. 

Consistent with our previous reports, both CAR4 cells (38.6±0.2) and CAR8 cells (267±2) 

showed significantly increased expression of GzB, in comparison to the controls (Figure 

47 In agreement with the killing efficiency data (Figure 46), CAR4 cells expressed lower 
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amounts of GzB in comparison to CAR8 cells, suggesting that the origin of the differing 

kinetic efficiencies of these cells might be the differences in GzB content (Figure 47). 

 

 

Figure 47: Box and whisker plots (extremities indicate 99% confidence 
intervals) displaying intracellular expression of Granzyme B 
identified by immunofluorescent staining and flow-cytometry. 
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             In order to quantify the contribution GzB secretion to tumor cell killing at the 

single cell level, the ability of CAR4 cells to kill tumor cells in the presence of the calcium 

chelator EGTA was studied using flow cytometry (88). EGTA blocks cytotoxic granule 

exocytosis, and hence should eliminate GzB mediated killing. Not surprisingly, CAR4 cells 

co-cultured with tumor cells in the presence of 5 mM EGTA, demonstrated a substantial 

reduction in tumor cell killing across three different cell lines, Daudi-β2m, NALM-6 and 

CD19+EL4 (Figure 48). The most striking reduction was seen with Daubi-β2m tumor cells, 

wherein CAR4 cell mediated killing was completely abolished (Figure 48). 

 

Figure 48: Flow cytometric killing assay (E:T = 5:1) of CAR4 cells incubated 
with three separate target cell lines (Daudi-β2m, NALM-6 and 
CD19+EL4) in the absence or presence of 5mM EGTA blockade. 

 

2.3.8. CAR+ T-cell fate is dependent on tumor-cell density.  

            AICD is a mechanism by which T cells undergo programmed apoptosis in response 

to functional activation (89). The frequency and kinetics of individual cytolytic CAR+ T 

cells to undergo AICD was monitored under the two conditions: at high and low tumor 

densities. CAR8 cells inducing apoptosis of single targets demonstrated significantly faster 
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kinetics of AICD (tAICD 221±14 minutes) in comparison to the multi-killer CAR8 cells from 

the same donors (tAICD 371±29 minutes, Figure 49).  

 

Figure 49: Comparisons of the mean kinetics of effector apoptosis of 
individual single killer CAR+ T cells (E:T 1:1) with multi-killer 
CAR+ T cells (E:T 1:2-5). Each circle represents a single-cell 

            This trend of faster AICD kinetics at lower tumor cell density was also observed 

with CAR4 cells, although with delayed kinetics (Figure 49). Direct comparisons of the 

cells of different phenotypes at the same tumor cell density indicated that single-killer 

CAR8 cells underwent faster AICD (tAICD, 221±14 minutes) in comparison to CAR4 cells 

(t AICD 328±19 minutes) (Figure 49). Consistent with the expectation that multi-killers 

efficiently resist AICD, these T cells from three of four donors displayed low frequencies 

of cells undergoing AICD (13-25%, Figure 50).  
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Figure 50: Frequency of killer-cell apoptosis as a function of tumor cell 
density. 

            However, multi-killer T cells from the last donor displayed AICD at elevated 

frequencies (58%) underscoring that the efficiency of multi-killers to execute multiple 

tumor cells must be evaluated in the context of their ability to resist AICD (Figure 50). 

We confirmed that the effector apoptosis that was observed required functional antigenic 

stimulation by co-incubating CAR8 cells with CD19-EL4 cells within nanowell grids and 

imaged them using TIMING. The frequency of apoptotic effectors under these conditions 

was only 4% and this also confirmed that phototoxicity was negligible under the current 

imaging conditions. 
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             Significantly, across all four donors, the frequencies of cytolytic CAR+ T cells 

undergoing AICD was higher at an E:T of 1:1 in comparison to the multi-killer CAR+ T 

cells, and this effect was more exaggerated with CAR8 cells (Figure 50). These data may 

help account for the decrease in number and even disappearance of infused CAR+ T cells 

when the CD19+ tumor mass is reduced. 

2.4. DISCUSSION 

             We implemented a high-throughput single-cell assay (TIMING) to dynamically 

profile the functionality of CAR+ T cells. Our analyses at the single-cell level demonstrate 

that much like CAR8 cells, CAR4 cells can directly engage in tumor cell killing, albeit 

with altered kinetics. We further demonstrate that CAR4 cells can participate in multi-

killing via simultaneous conjugation to multiple tumor cells. 

             At low tumor cell densities (E:T 1:1), the majority of the single killer CAR8 cells 

were significantly faster in killing tumor cells in comparison to individual CAR4 cells 

(Figure 41). By contrast, both single killer CAR8 and CAR4 cells within the S1 subgroup, 

characterized by their high basal motility, displayed no significant differences in the 

kinetics of tumor cell killing. Furthermore, in contrast to the rest of the population, effector 

apoptosis was infrequent amongst CAR8 and CAR4 cells in the S1 subgroup. Collectively, 

these data suggested that the high basal motility of CAR+ T cells (CAR4 or CAR8) might 

help identify efficient killers with decreased propensity for AICD.  

When interacting with increased numbers of tumor cells (E:T ratios of 1:2 to 1:5), both 

individual CAR4 and CAR8 cells efficiently conjugated to multiple tumor cells, facilitating 

multiplexed killing.  Comparisons amongst the different tumor cells killed by these 

individual multi-killer CAR4/CAR8 cells demonstrated that they displayed an essentially 
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unchanged efficiency (tContact) of killing of not only the first and second target killed, but 

also in comparison to (single-killer) CAR+ T cells that were incubated with only one tumor 

cell (Figure 51).  

 

Figure 51: Comparison of the killing efficiency of individual single killer 
CAR+ T cells (E:T 1:1) with multi-killer CAR+ T cells (E:T 1:2-5) 
that killed multiple NALM-6 tumor cells. 

            In comparing CAR4 cells with CAR8 cells however, consistent with the 

observations at an E:T ratio of 1:1 , CAR4 cells were significantly slower in tumor cell 

killing. Intracellular staining at the single-cell level indicated that the molecular origin of 

the differences in kinetic efficiency of the CAR4 and CAR8 cells could be attributed to 

their GzB content and this was further confirmed by blocking granule exocytosis using 

EGTA (Figure 47-48). 

For both CAR4 and CAR8 cells, single killer effectors underwent apoptosis at 

higher frequencies and with faster kinetics in comparison to multi-killer CAR+ T cells. 

These data indicate that activation for lysis through multiple targets as opposed to 
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prolonged conjugation with a single target reduces the propensity for effector apoptosis. 

Although the mechanistic basis for the responsiveness of these T cells to antigen/target 

density is not known, it is conceivable that the continuous propagation of these cells on 

irradiated aAPC at defined ratios, allows for balanced activation while minimizing AICD 

(90). Collectively, these data could provide mechanistic insights into observations that 

infused CAR+ T cells swell in number in response to addressing large numbers of CD19+ 

tumor cells, but then decline in number as the tumor bioburden is lowered due to the multi-

killing by effector T cells (63, 91).  

In aggregate, comparisons of the CAR4 cells and CAR8 cells demonstrate that 

while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, 

likely due to the lower GzB content. This decreased kinetic efficiency however is likely a 

minor disadvantage and is counter balanced by their decreased propensity of these cells to 

undergo AICD in the absence of help from other cells, as profiled in our nanowell system. 

Indeed, recent preclinical and clinical data have suggested that complete eradication of 

established tumors can be accomplished by the adoptive transfer of T cells derived 

exclusively from CD4+ T cells (73-75). Similarly, adoptive transfer of human T helper 17 

(TH17) cells has shown preclinical promise for the treatment of ovarian cancer (92, 93).  

Although we have focused on the heterogeneity amongst CAR+ T cells, the results 

presented here are also likely influenced by the underlying heterogeneity in tumor cells. 

While the expression of CD19 is uniform on the cells used as targets in our assays (Figure 

7), it is feasible that there could be subpopulations of tumor cells that are resistant to CAR+ 

T-cell mediated killing. 
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Data from clinical trials have also shown a correlation between in vivo persistence 

of infused CAR+ T cells and patient outcomes (94). Significantly, the findings of our short-

term TIMING data (12h monitoring) that describes motility and ability to resist AICD as 

important attributes of functional T cells, is consistent with persistence data obtained in 

mouse models infusing CD19-specific CAR+ T cells that suggest that these same features 

are essential for tumor regression (95). Motility is likely a key parameter of the efficacy of 

T-cell therapies and has a significant role in tumor regression. It has been previously 

demonstrated that cancer cells from B-cell malignancies effectively dampen anti-tumor 

responses via disruption of actin-based basal T-cell motility in vitro (96-98). Second, the 

negative costimulatory molecules, PD1 and CTLA4 have opposing effects on T-cell 

motility both in vitro and in vivo (99, 100). Finally, recent intravital microscopy data from 

melanoma models in mice have demonstrated that successful therapeutic anti-CTLA4 

treatment correlates with greater T-cell motility (101). 

The variation in the composition of CAR+ T cells within a population of effector 

cells between donors across samples highlights the challenges in eliciting functional 

responsiveness in heterogeneous samples. As the field of adoptive immunotherapy takes 

on the challenge of targeting diseases that vary in burden, biodistribution, and antigen 

expression and density, it is important that a priori definitions of single-cell potency 

(proliferation, killing, cytokine secretion etc.) be available. We suggest that 

identifying/quantifying specific biomarkers of efficacy, as described herein, may enable 

the manufacture of next-generation CAR+ T cells. 
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CHAPTER 3 

Integrated single-cell functional and molecular profiling of dynamic T cell behavior 

 

Note: this is a reformatted manuscript in preparation for submission to Cancer 

Research. 

3.1. INTRODUCTION 

Integrative quantification of single-cell dynamic functional behavior and the 

underlying mechanisms responsible for the functions is essential to developing a 

comprehensive understanding of cellular behaviors. Quantifying the heterogeneity at the 

single-cell level in high-throughput across multiple biological dimensions from the genome 

and transcriptome, to intracellular and extracellular signaling, and to interaction with other 

kinds of cells can have a direct impact on improving therapeutic discovery in 

biotechnology, diagnosis of diseases, and in facilitating immunotherapy (28). While flow 

cytometry is an excellent tool for providing snapshots of the cellular phenotype, it is not 

well suited for studying continuous dynamic cellular behaviors. To characterize the 

complete identity of individual single cells, it is desirable to have a modular method that 

can quantify and screen for cellular functionality such as motility, interaction with other 

cells, and protein secretion; and the ability to integrate these parameters with single-cell 

multiplexed molecular platforms. 

T cells are an essential component of the adaptive immune response against 

pathogens and tumors. A critical hallmark of a robust adaptive immune response against 

pathogens and tumors is the ability of individual T cells to participate in multiple functions 

(polyfunctionality) (1, 102). T cells play an important role in mediating anti-tumor 
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immunity and the presence of tumor infiltrating lymphocytes (TILs, check abbreviations 

and definitions section) is a positive clinical prognostic marker for certain tumors (103). 

Among the most well described functional attributes of T-cell anti-tumor efficacy are 

motility (tumor-trafficking and infiltration) (27), direct cytotoxicity (release of cytotoxic 

molecules) (23, 24) and secretion of the pro-inflammatory cytokines like IFN-γ (25, 26). 

Unlike cytotoxicity that only influences the target cell that is directly conjugated to the T 

cell, secretion of IFN-γ has a more profound influence on all cells within the 

microenvironment by multiple mechanisms including elevated expression of HLA-class I 

molecules (104), induction of chemokines that promote immune cell infiltration (105), 

mediation of angiostasis (106), and prevention of the outgrowth of antigen-loss variants 

(107).  In addition, secretion of IFN-γ can also induce adaptive resistance mechanisms in 

tumors by inducing the expression of T-cell suppressive molecules and down-modulation 

of tumor antigen expression (108). 

Direct measurement of all these T cell functions at the single-cell level requires the 

simultaneous monitoring of multiple parameters including cell-cell interactions, cell 

migration, gene expression, the ability to detect secreted proteins, and the survival of the 

effector cells. These challenges have been tackled by measuring just a subset of these 

effector functions and relying on correlative studies to establish a link to cellular 

functionality. Indeed, while multiphoton microscopy is a useful for studying T-cell motility 

and cytotoxicity in situ or in vivo (109-111), the number of T cells that can be 

simultaneously tracked is small and limited to the field-of-view, potentially leading to 

sampling bias. In vitro dynamic imaging systems (56, 78, 112, 113) may be better suited 

for studying the longitudinal interactions between T cells and target cells at single-cell 
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resolution, in a defined environment and high-throughput. Microfabricated nanowell arrays 

are ideal for tracking both the motility and interaction between cells (56, 78, 112). While 

elegant methods like microengraving (31, 32) and the single-cell barcode chip (SCBC) 

(33), have been reported for the analysis of cytokines secreted by single cells, these require 

capture of the secreted cytokine on a separate glass substrate via encapsulation. 

Significantly, there are as yet no reports documenting the simultaneous measurement of 

motility, T-cell target-cell interaction parameters including the kinetics of killing, and 

cytokine secretion quantified within the same timeframe.  

Here, we have developed and validated an integrated methodology that combines 

microbead-based molecular sensors for detecting cytokine secretion from single T cells 

concurrently with Timelapse Imaging In Nanowell Grids (TIMING) to monitor T-cell 

motility and cytotoxicity, without the need for encapsulation (31, 33). We demonstrate that 

TIMING can be used to combine functional and molecular screening at the single-cell 

level, by performing multiplexed transcriptional profiling (96 genes) on CD19-specific 

CAR+ T cells. Simultaneous quantification of the interaction between individual tumor-

specific CD8+ T cells and multiple target cells demonstrated that IFN-γ was the most 

common function elicited. However, CD8+ T cells with killing ability, especially serial 

killing ability, required shorter durations of target cell conjugation in comparison to IFN-γ 

secreting mono-functional cells, indicating rapid synapse termination by T cells capable of 

killing versus cytokine secretion. The behavioral interaction of polyfunctional T cells 

exhibiting both killing and IFN-γ secretion was similar to that of serial killers without IFN-

γ secretion, suggesting that killing was the dominant determinant of the interaction 

behavior. Tracking the velocities of these cells by longitudinal time-lapse imaging revealed 
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that these serial killer T cells (with or without IFN-γ secretion) may be identified based on 

their higher out-of-contact basal motility. Single-cell multiplexed transcriptional profiling 

of T cells identified only by their basal motility, confirmed that the motile cells expressed 

an activated phenotype with significantly increased amounts of perforin and other genes 

associated with chemotaxis. We propose an integrated model of functional CD8+ T-cell 

behavior based on these results. 

3.2. Methods 

3.2.1. Human Subjects Statement. All work outlined in this report was performed 

according to protocols approved by the Institutional Review Boards at the University of 

Houston and the University of Texas M.D. Anderson Cancer Center. 

3.2.2. Cell lines, primary T cells, TILs, and reagents. Human pre-B cell line NALM-6 

(ATCC) and CAR+ T cells were cultured as described previously (81). The cell lines were 

routinely tested to ensure that they were free of mycoplasma contamination and flow-

cytometry was utilized to confirm the expression of CD19. TILs were isolated and 

expanded as previously described. Briefly, initial TIL expansion was performed in 24-well 

plates from either small 3-5 mm2 tumor fragments or from enzymatic digestion, followed 

by centrifugation with FICOLL. TILs were then allowed to propagate for 3-5 weeks in 

TIL-complete media containing 6000 IU/mL human recombinant IL-2 (Prometheus). Once 

desired number of TIL was achieved, Rapid Expansion Protocol (REP) was performed in 

which TIL was cultured together with PBMC feeder cells (1 TIL: 200 feeders) preloaded 

with anti-CD3 (OKT3, eBioscience) in a G-REX 100M flask until the desired number of 

cells were achieved and harvested. Table 3 provides a complete listing of reagents used in 

this study. 
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Table 3: List of important reagents described in this manuscript 

Reagents Manufacturer Reference 
ProMag™ 3 Series • Goat 
anti-Mouse IgG (Fc) beads 
(PMM3N) 

Bangs Laboratories, 
Inc. 

http://www.bangslabs.com/sites/def
ault/files/imce/docs/PDS%20723%2
0Web.pdf 

PKH26 Red Fluorescence 
Cell Linker Kits 

Sigma-Aldrich https://www.sigmaaldrich.com/cont
ent/dam/sigma-
aldrich/docs/Sigma/Bulletin/mini26
bul.pdf 

PKH67 Green 
Fluorescence Cell Linker 
Kits 

Sigma-Aldrich http://www.sigmaaldrich.com/conte
nt/dam/sigma-
aldrich/docs/Sigma/Bulletin/midi67
bul.pdf 

Annexin V-Alexa Fluor 
647 (A23204) 

Life Technologies https://tools.lifetechnologies.com/co
ntent/sfs/manuals/mp13199.pdf 

Mouse anti-human IFNγ 
mAb 1-D1K (3420-3-250) 

Mabtech https://www.mabtech.com/sites/defa
ult/files/datasheets/3420-3-250.pdf 

Mouse anti-human IFNγ 
mAB 7-B6-1 biotinylated 
(3420-6-250) 

Mabtech https://www.mabtech.com/sites/defa
ult/files/datasheets/3420-6-250.pdf 

R-Phycoerythrin 
Streptavidin (Strep –PE) 
(016-110-084) 

Jackson 
ImmunoResearch 
Laboratories, Inc. 

https://www.jacksonimmuno.com/c
atalog/products/016-110-084 

DNA Suspension Buffer, 
(10mM Tris, 0.1mM 
EDTA, pH 8.0) 

Teknova http://www.teknova.com/DNA-
SUSPENSION-BUFFER-
p/t0221.htm 
 

CellsDirect™ One-Step 
qRT-PCR Kit 

Life Technologies https://www.lifetechnologies.com/o
rder/catalog/product/11753100 

Exonuclease I (E. coli) New England 
Biolabs 

https://www.neb.com/products/m02
93-exonuclease-i-e-coli 

TE Buffer 10mM Tris, 
1mM EDTA 

Teknova http://www.teknova.com/TE-
BUFFER-p/t0224.htm 

SsoFast EvaGreen 
Supermix with Low ROX 

Bio-Rad http://www.bio-rad.com/en-
us/sku/172-5211-ssofast-evagreen-
supermix-with-low-rox 

SUPERase In RNase 
Inhibitor (20 U/μL) 

Life Technologies https://www.lifetechnologies.com/o
rder/catalog/product/AM2694 

96.96 Dynamic Array Chip 
for Gene Expression Fluidigm https://www.fluidigm.com/ifcs 
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3.2.3. Beads preparation: coating beads with primary capture antibody. 1 μL of Promag 

3 Series goat anti-mouse IgG-Fc beads (~2.3 x 105 beads) in solution was washed with 10 

μL of PBS, and re-suspended in 19.6 μL PBS (~0.05% solids). Mouse anti-human IFN-γ 

(clone 1D1K) was then added to beads at final concentration of 10 μg/mL and incubated 

for 30 min at room temperature (RT), followed by washing and re-suspension in 100 μL 

PBS. 

3.2.4. ELISpot assays. ELISpot assay was performed with fresh PBMC and TIL as 

previously described (31). Briefly, microwell plates were coated with capture antibody 

anti-human IFNγ-1D1K at 10 µg/mL overnight at 4 °C. The next day, the plates were 

washed twice in PBS and blocked with RPMI-PLGH +10% FBS for 45 min at 37 °C. Cells 

were prepared, as follows, in triplicates: (1) 4,000 PBMC stimulated with 10 ng/mL PMA/1 

µg/mL ionomycin per well (2) 4,000 melanoma-specific TIL stimulated with 10 ng/mL 

PMA/1 µg/mL ionomycin per well (3) 200,000 PBMC stimulated with 2 µg/mL CEF 

peptide (4) Corresponding non-stimulated cells. Next, cells were incubated for 18 hr at 37 

°C/5% CO2, followed by five washes with PBS and 2 hr incubation with biotinylated 

detection anti-human IFNγ 7-B61 at 37 °C/5% CO2 in PBS +0.5% FBS. After washing 

with PBS seven times, the immunosandwich was completed with subsequent addition of 

extravidin-alkaline phosphatase (1hr incubation at 37 °C/5% CO2 [Sigma-Aldrich]). The 

plate was washed five times with PBS, and BCIP/NBT (Sigma-Aldrich) substrate was 

added and incubated for 15 min at 37 °C/5% CO2. The plate was subsequently read with 

ELISpot reader (C.T.L. counter) while taking into account background measurement. 

3.2.5. Nanowell array fabrication and cell preparation. Nanowell array fabrication for 

interrogation of effector functions at single-cell level was performed as described 
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previously (78). Approximately 1 million effector cells and target cells were both spun 

down at 400 xg for 5 min followed by labeling with 1 μM PKH67 and PKH26 fluorescent 

dyes respectively according to manufacturer’s protocol. Excess unbound dyes were then 

washed away and cells were re-suspended at ~2 million cells/mL concentration in complete 

cell-culture media (RPMI + 10% FBS). 

3.2.6. Finite element simulations. The system of partial differential equations to model 

variation of analyte concentrations, C and Cs, with time, was solved using Transport of 

diluted species interface, Chemical reaction engineering module in COMSOL 

Multiphysics 4.1. Mass balance equation involving Cs was solved using its weak form. 

Change in positions of cell and bead, convective transport, diffusion on the bead surface 

(Ds = 10-25 m2/s), non-specific adsorption on walls and degradation of analyte were 

neglected to simplify numerical simulations.  

3.2.7. TIMING assays for multiplex study of effector cytolytic phenotypes and IFN-γ 

secretion. Capture antibody coated beads and labeled effector and target cells were loaded 

consecutively onto nanowell arrays. Whenever necessary, arrays were washed with 500 μL 

of cell culture media to remove excess beads or cells. Next, detection solution containing 

Annexin V - Alexa Fluor 647 (AF647) (Life Technologies) (for detection of target 

apoptosis) were prepared by adding 50 μL solutions from stock to 2.5 mL of complete cell-

culture media without phenol red. Nanowell arrays were then imaged for 5 hr at interval of 

5 minutes using LEICA/ZEN fluorescent microscope utilizing a 20x 0.45 NA objectives 

and a scientific CMOS camera (Orca Flash 4.0). Subsequently, mouse anti-human IFN-γ 

biotin was added to 2.5 mL cell media above at 1:1000 dilution. This was incubated for 30 

minutes followed by washing and incubation with 5 μg/mL Streptavidin - R-Phycoerythrin 
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(PE). The entire chip was again imaged to determine the intensity of PE signal on the 

microbeads and the two datasets were matched using custom informatics algorithms. 

3.2.8. Image processing, cell segmentation and tracking, and data analytics. Image 

analysis and cell segmentation/tracking were performed as described previously (113). The 

pipeline of image processing and cell segmentation ends with statistical data analysis based 

on the tabular spatio-temporal measurement data generated by the automated segmentation 

and cell tracking algorithms. Nanowells containing 1 effector and 2-5 tumor cells were 

selected for further analysis. We then partitioned all these events based on the 

functionalities of the cells i.e., mono-kill, serial kill, and IFNγ secretions. A size-exclusion 

filter based on maximum pixel areas were used to effectively differentiate cells from beads.  

3.2.9. Gene expression profiling. PKH green stained CD8+ T cells were loaded on a 

nanowell array, immersed with Annexin-AF647 (Life Technologies) containing phenol red 

free complete cell-culture medium and imaged for 3 hours using TIMING exactly as 

described above. After carefully washing the cells on the chip 3 times with cold PBS (4°C), 

cells were kept at 4°C until retrieval. Time-lapse sequences were manually analyzed to 

identify live high and low motility cells. The cells were individually collected using an 

automated micro-manipulating system (CellCelector, ALS) and deposited in nuclease free 

microtubes containing 5 μL of 2x CellsDirect buffer and RNAse Inhibitor (Invitrogen). 

Single cell RT-qPCR was then performed using the protocol ADP41 developed by 

Fluidigm. Ninety-two cells (48 motile and 44 non motile) were assayed, along with bulk 

samples of 10 and 100 cells, and with no-cell and no-RT controls. The panel of 95 genes 

(Table 4) included genes relevant to T cell activation, signaling and gene regulation, and 

was designed and manufactured by Fluidigm D3 AssayDesign.  
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Table 4: List of targeted genes and primer design for DELTAgene qPCR assays 

 

 

Target FP RP Gene Full Name

ALDOA CCATGGCGACCGTCACA TCACTCTGGCCTCCAGACA aldolase A, fructose-bisphosphate

B2M TCCGTGGCCTTAGCTGTG CCCAGACACATAGCAATT
CAGG

beta-2-microglobulin

BCL2 GACAGAGGATCATGCTG
TACTT

CTTGGCATGAGATGCAGG
A

B-cell CLL/lymphoma 2

BCL6B AACCCCTCAGAGCACAC
AA

CGGCCCCGGAAAATTGAA
TA

B-cell CLL/lymphoma 6, member B

BTLA TCCCATATCTGGACATCT
GGAAC

CTCCTGCTAAGATGGAGTG
TTCA

B and T lymphocyte associated

CCL3 CCGTCACCTGCTCAGAAT
CA

CCATGGTGCAGAGGAGGA
C

chemokine (C-C motif) ligand 3

CCL4 CGTGACTGTCCTGTCTCT
CC

TCTACCACAAAGTTGCGA
GGAA

chemokine (C-C motif) ligand 4

CCR1 AACCCAGAAAGCCCCAG
AAA

GTGGTGTTTGGAGTTTCCA
TCC

chemokine (C-C motif) receptor 1

CCR2 ACATACCAGGACTGCCT
GAG

GTGGATGTACTGGGGAAA
TGC

chemokine (C-C motif) receptor 2

CCR4 CATTGCCTCACAGACCTT
CC

AGGGTGGTGTCTGCTATAT
CC

chemokine (C-C motif) receptor 4

CCR5 TGAGACATCCGTTCCCCT
ACA

TGGCAGGGCTCCGATGTAT
A

chemokine (C-C motif) receptor 5

CCR6 AGGCAGCGATGTCTGTGA
A

AGCTCAAGCCCCAACATC
A

chemokine (C-C motif) receptor 6

CCR7 GTGGTGGCTCTCCTTGTC
A

TGTGGTGTTGTCTCCGATG
TA

chemokine (C-C motif) receptor 7

CD160 AGAAGCCAGAAGTCAGG
TATCC

TCCCGTCACTGTGTAGTTC
C

CD160 molecule

FAS AGAAGGGAAGGAGTACA
CAGAC

CCGGGTGCAGTTTATTTCC
A

Fas (TNF receptor superfamily, 
member 6)

CD2 AGTGCACAGCAGGGAAC
AA

AGGCTGCCTCCTCCACATA CD2 molecule

CD244 AACCACAGCCCTTCCTTC
AA

GAGCAGGGTTCTGGGCTTT
A

CD244 molecule, natural killer cell 
receptor 2B4

CD27 CACTACTGGGCTCAGGGA
AA

TGCTGGTCACAGTCCTTCA CD27 molecule

CD28 GTCCTGGCTTGCTATAGC
TT

CATGTAGTCACTGTGCAGG
A

CD28 molecule

CD3D CGTTTCTCTCTGGCCTGGT
A

CTCTACCCATGTGATGCTG
GTA

CD3d molecule, delta (CD3-TCR 
complex)

CD3E GCTACCCCAGAGGAAGC
AAA

TCCATCTCCATGCAGTTCT
CAC

CD3e molecule, epsilon (CD3-TCR 
complex)

CD4 AAAGTTGCATCAGGAAG
TGAACC

CCCACACCTCACAGGTCA
AA

CD4 molecule

CD40LG
GAGGCCAGCAGTAAAAC
AAC

AGTTGTTGCTCATGGTGTA
GTA CD40 ligand
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Table 4 (continued)

 

Target FP RP Gene Full Name

CD44 CCGGACACCATGGACAA
GTT

CCTGCAAAGCGGCAGGT CD44 molecule (Indian blood group)

CD58 AATCATTTTGACAACCT
GTATCCC

TGTAATTACTGCTAATGG
TATGGGTA

CD58 molecule

CD63 GCAGCCAGCCTTGGGAA GCAAGAACTTCACACATT
TCATTCC

CD63 molecule

CD69 TCACCCATGGAAGTGGTC
AA

ACACACTTGTCAGACCCT
GTA

CD69 molecule

CD80 TGCTGGCTGGTCTTTCTC
A

GAGTTTGTGCCAGCTCTTC
AA

CD80 molecule

CD86 CGGCCTCGCAACTCTTAT
A

TGGTCTGTTCACTCTCTTC
C

CD86 molecule

CD8A ACTTCGTGCCGGTCTTCC
T

GCTGCGACGCGATGGT CD8a molecule

CSF2 TGATGGCCAGCCACTAC
AA

CAAAGGGGATGACAAGCA
GAAA

colony stimulating factor 2 
(granulocyte-macrophage)

CTLA4 CTTGGATTTCAGCGGCAC
AA

GCTGCTGGCCAGTACCA cytotoxic T-lymphocyte-associated 
protein 4

CX3CL1 CCACCTTCTGCCATCTGA
C

CGTGATGTTGCATTTCGTC
AC

chemokine (C-X3-C motif) ligand 1

CX3CR1 GTAGTGTTTGCCCTCACC
AAC

ATCAGACAAGGCCAGGTT
CA

chemokine (C-X3-C motif) receptor 1

CXCL10 GCTGTACCTGCATCAGCA
TTA

CTGGATTCAGACATCTCTT
CTCAC

chemokine (C-X-C motif) ligand 10

CXCL12 AGCCAACGTCAAGCATC
TCA

GCTTCGGGTCAATGCACAC chemokine (C-X-C motif) ligand 12

CXCL9 AGCCCTTCCTGCGAGAA
AA

ATCTGCTGAATCTGGGTTT
AGACA

chemokine (C-X-C motif) ligand 9

IL8RA ATCTCTGACTGCAGCTCC
TA

TGTCCTCTTCAGTTTCAGC
AA

chemokine (C-X-C motif) receptor 1

CXCR3 AACTGTGGCCGAGAAAG
CA

TTGAGGCAGCAGTGCATGT
A

chemokine (C-X-C motif) receptor 3

CXCR4 ATCTTCCTGCCCACCATC
TAC

CCCATGACCAGGATGACC
AA

chemokine (C-X-C motif) receptor 4

FASLG TGGGGATGTTTCAGCTCT
TCC

CTGTGTGCATCTGGCTGGT
A

Fas ligand (TNF superfamily, member 
6)

FOXP3 TGTGGGGTAGCCATGGAA
A

GGGTCGCATGTTGTGGAA forkhead box P3

G6PD GCCGTCACCAAGAACAT
TCA

CTCCCGAAGGGCTTCTCC glucose-6-phosphate dehydrogenase

GAPDH ACACCATGGGGAAGGTG
AAG

GTGACCAGGCGCCCAATA glyceraldehyde-3-phosphate 
dehydrogenase

GATA3 CACGGTGCAGAGGTACCC AGGGTAGGGATCCATGAA
GCA

GATA binding protein 3

GZMA GAAGCCTCCGAGGTGGA
A

GAAAACACCCTCGCACAA
CA

granzyme A (granzyme 1, cytotoxic T-
lymphocyte-associated serine 
esterase 3)
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Table 4 (continued)

 

Target FP RP Gene Full Name

GZMB
CCCCATCCAGCCTATAA
TCCTAA

CTGGGCCTTGTTGCTAGGT
A

granzyme B (granzyme 2, cytotoxic T-
lymphocyte-associated serine 
esterase 1)

GZMK ATCCACAGTGGGTGCTGA
C

AGAGTGTGCGCCTAAAAC
CA

granzyme K (granzyme 3; tryptase II)

HAVCR2 GGATCCAAATCCCAGGC
ATAA

CTTGGAAAGGCTGCAGTG
AA

hepatitis A virus cellular receptor 2

ICOS AGTCTGCATTTTGGGATG
CA

GTCGTGCACACTGGATGA
A

inducible T-cell co-stimulator

ICOSLG TTGGCTGCTGCATAGAGA
AC

CTTGTCTCTCTCTCCGATG
TCA

inducible T-cell co-stimulator ligand

IFNG ACTGCCAGGACCCATAT
GTAA

GTTCCATTATCCGCTACAT
CTGAA

interferon, gamma

IFNGR1 AAGCCAGGGTTGGACAA
AA

GATATCCAGTTTAGGTGGT
CCAA

interferon gamma receptor 1

IL10 CCGTGGAGCAGGTGAAG
AA

GTCAAACTCACTCATGGC
TTTGTA

interleukin 10

IL12A
CACAGTGGAGGCCTGTTT
A

TCTGGAATTTAGGCAACT
CTCA

interleukin 12A (natural killer cell 
stimulatory factor 1, cytotoxic 
lymphocyte maturation factor 1, p35)

IL12B
TCCCTGACATTCTGCGTT
CA

GGTCTTGTCCGTGAAGACT
CTA

interleukin 12B (natural killer cell 
stimulatory factor 2, cytotoxic 
lymphocyte maturation factor 2, p40)

IL12RB1 GCCATATCCGGATGCAG
AC

CAGCTGTGGGACCCTCATA interleukin 12 receptor, beta 1

IL12RB2 GTCTTGGAAGCTCCTCTT
CAC

TCTAATGTCCCACGGAGG
AA

interleukin 12 receptor, beta 2

IL13 TGCAGTGCCATCGAGAA
GAC

TCGGACATGCAAGCTGGA
AA

interleukin 13

IL15 AGCCAACTGGGTGAATG
TAA

CACTTTCCGTATATAAAG
TAGCATCA

interleukin 15

IL15RA TGAGCGCTGTGTCTCTCC CCTCCATGGCTTCCATTTC
AAC

interleukin 15 receptor, alpha

IL17A ACTACAACCGATCCACC
TCAC

ACTTTGCCTCCCAGATCAC
A

interleukin 17A

EOMES CTGTGGCAAAGCCGACA
ATA

CTCATCCAGTGGGAACCA
GTA

eomesodermin

IL17RA CCAAACCACCAGTCCAA
GAA

CTCATGCATGGCGTGGTTA interleukin 17 receptor A

IL18 GACCAAGGAAATCGGCC
TCTA

TCACAGAGATAGTTACAG
CCATACC

interleukin 18 (interferon-gamma-
inducing factor)

IL18R1 GGTTCTTCTTGGACCAAA
GCTTAA

AGCAGAGCAGTTGAGCCT
TA

interleukin 18 receptor 1

IL2 CCCAGGGACTTAATCAG
CAATA

TTCTACAATGGTTGCTGTC
TCA

interleukin 2

IL21R
TGCATCCTGGAAATGTGG
AAC

CCTCGTCCTTCAGCTCTTC
ATA interleukin 21 receptor
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Table 4 (continued)

 

Target FP RP Gene Full Name

IL2RA GCACAGGTGAAATGGAG
ACC

GACGAGGCAGGAAGTCTC
A

interleukin 2 receptor, alpha

IL2RB ATGGCCATCCAGGACTTC
A

TTGCATCTGTGGGTCTCCA interleukin 2 receptor, beta

IL2RG GCCCAATGGGAATGAAG
ACA

TGGAAACACTGAGGGAGT
CA

interleukin 2 receptor, gamma

IL4 CAGCTGATCCGATTCCTG
AAA

GTTGGCTTCCTTCACAGGA
C

interleukin 4

IL4R GAGCTCCGCCTGTTGTAC
C

GCGCCTCCGTTGTTCTCA interleukin 4 receptor

IL5 ACTCTGAGGATTCCTGTT
CCTGTA

CCAGTGTGCCTATTCCCTG
AAA

interleukin 5 (colony-stimulating 
factor, eosinophil)

IL7R GGAGAAAGTGGCTATGC
TCAA

CTGCGATCCATTCACTTCC
A

interleukin 7 receptor

IRF4 CTACAACCGCGAGGAGG
AC

TGTCGATGCCTTCTCGGAA
C

interferon regulatory factor 4

KLF4 CTGCGGCAAAACCTACA
CAA

CGTCCCAGTCACAGTGGTA
A

Kruppel-like factor 4 (gut)

KLRG1 ACCCAAGCCCAGAATGA
CTA

TTGCCACAAGGCAAGAAC
A

killer cell lectin-like receptor subfamily 
G, member 1

LAG3 TGGAGCCTTTGGCTTTCA
C

GAGGGTGAATCCCTTGCTC
TA

lymphocyte-activation gene 3

LEF1 AAGAAAGTGCAGCTATC
AACCA

GCTGTCTTTCTTTCCGTGCT
A

lymphoid enhancer-binding factor 1

NANOS2 TGTCCCATCCTGAGGCAC
TA

ACCGTTAAGCGGGCAGTA
C

nanos homolog 2 (Drosophila)

NFKB1
CTGGAACCACGCCTCTAG
ATA

AAACTCTGGCTCATATGG
TTTCC

nuclear factor of kappa light 
polypeptide gene enhancer in B-cells 
1

PDCD1 GCAGCCTGGTGCTGCTA GTGCGCCTGGCTCCTA programmed cell death 1

PRF1 GTACAGCTTCAGCACTG
ACAC

CTGGGTGGAGGCGTTGAA perforin 1 (pore forming protein)

RORA CAGCAGATAACGTGGCA
GAC

GGCACACAATTGCCACAT
CA

RAR-related orphan receptor A

RORC CAAGACTCATCGCCAAA
GCA

TTTCCACATGCTGGCTACA
C

RAR-related orphan receptor C

STAT5A CCCAGGCTCCCTATAAC
ATGTA

ATGGTCTCATCCAGGTCGA
A

signal transducer and activator of 
transcription 5A

STAT5B AACAGAGGTTGGTCCGA
GAA

GTTTCTGGGACATGGCATC
A

signal transducer and activator of 
transcription 5B

TCF7 TTCAATCTGCTCATGCAT
TACCC

GTGGGCTGTTGAAATGTTC
GTA

transcription factor 7 (T-cell specific, 
HMG-box)

TGFB1 CGTCTGCTGAGGCTCAAG
TTA

TCGCCAGGAATTGTTGCTG
TA

transforming growth factor, beta 1

TGFB2 CAAAAGCCAGAGTGCCT
GAA

CGCTGGGTTGGAGATGTTA
AA

transforming growth factor, beta 2

TGFBR1
GAAATTGCTCGACGATG
TTCC

ACTGATGGGTCAGAAGGT
ACA

transforming growth factor, beta 
receptor 1
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Table 4 (continued)

 

For data analysis, we first extracted Log2Ex value by subtracting Ct values from a 

threshold of 29, as described previously (114). We then excluded data from i) cells that had 

less than 40% of genes that were amplified and had a mean of Log2Ex out of the range of 

population mean±3SD and from ii) genes that were amplified in <10% of cells (115, 116). 

Post-process analysis was done using Excel (Microsoft), Prism (GraphPad), MeV (117), 

STrenD (https://github.com/YanXuHappygela/STrenD-release-1.0) and Genemania 

webtool (http://www.genemania.org/). 

3.3. RESULTS 

3.3.1. Design of an integrated platform for simultaneous profiling of protein secretion 

and dynamic cell-cell interactions.  

We had previously reported on the ability to measure T-cell functions such as 

cytotoxicity at the single-cell level, but this was implemented as an end-point functional 

readout. We also quantified killing and cytokine secretion in different kinetic windows 

with no information on either intrinsic cellular behaviors like motility, or the nature of their 

interaction with target cells (50). Here, we sought to design an integrated method that had 

the ability to add/remove independent modules in determining the polyfunctional nature of 

the T cells: cytokine secretion, dynamics of interaction with target cells, cytotoxicity, and 

molecular profiling (Figure 52).  

Target FP RP Gene Full Name

TNFRSF9 GGGGCAGAAAGAAACTC
CTGTA

TCTGGAAATCGGCAGCTA
CA

tumor necrosis factor receptor 
superfamily, member 9

TNFSF14 AGGTCTCACGAGGTCAA
CC

CCCAGCTGAGTCTCCCATA
A

tumor necrosis factor (ligand) 
superfamily, member 14

ZAP70
AAGCGCGATAACCTCCT
CATA TTCCGTGTCTGCCTTCTCC

zeta-chain (TCR) associated protein 
kinase 70kDa
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Figure 52: High-throughput multiplexed functional and molecular profiling 
of single-cell through combination of beads assay, TIMING and 
microfluidic qPCR 

Starting with our recently reported Time-lapse Imaging Microscopy In Nanowell 

Grids (TIMING) (113), a high-throughput analytical platform for monitoring dynamic 

cellular behavior, we implemented functionalized beads as biosensors of the local 

microenvironment within individual nanowells to profile cytokine secretion (Figure 53), 

and microfluidic qPCR to facilitate gene expression profiling. Effector cells and target cells 

were labeled with PKH67 and PKH26 (Sigma) respectively and cytokine-positive beads 

fluoresced in red (Streptavidin-PE). 
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Figure 53: Schematic of beads assay and antibodies sandwich to detect 
cytokine secreted from single-cell.  

This integrated approach could thus be used to profile cytokine secretion simultaneously 

with cytotoxicity, on one unified microscope platform. 

3.3.2. Frequency of IFNγ-secreting T cells enumerated by functionalized microbeads 

within nanowell arrays is correlated to the same responses determined using ELISpot.  

We first tested the ability of functionalized microbeads to efficiently capture 

proteins secreted by single cells after incubation in individual nanowells by measuring the 

limit of detection (LoD) of functionalized beads at different concentrations of the analyte. 

Briefly, antibody-coated beads were incubated with varying concentrations of IFN-γ (0 – 

5000 pg/mL) for a period of two hours at 37 °C, loaded onto nanowell arrays, and 

subsequently detected with a fluorescently labeled secondary antibody. The background 
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corrected mean fluorescent intensity (MFI) quantified across a minimum of 30 beads 

confirmed that IFN-γ was detectable at a concentration of 500 pg/mL (Figure 54).  

 

Figure 54: Background-corrected mean fluorescence intensity (MFI) 
detected from a minimum of 30 IFNγ-positive beads, as a function 
of IFNγ analyte concentration. 

Next, the correlation between the nanowell encapsulated bead assay and ELISpot 

for quantifying frequencies of single T cells secreting IFN-γ upon activation was 

determined. To account for variations in stimulus and the diversity of T-cell populations, 

the frequency of IFN-γ secreting single T cells was enumerated under three sets of 

conditions: stimulation of peripheral blood mononuclear cells (PBMC) with HLA-class I 

peptide pools targeting common viral antigens; stimulation of PBMC with phorbol 12-

myristate 13-acetate (PMA)/ionomycin; and stimulation of in vitro expanded, melanoma-

specific TIL with PMA/ionomycin. An aliquot of 106 cells were stimulated for a period of 

3-5 h and an aliquot of ~100,000 cells was loaded onto a nanowell array (84,672 nanowells, 

125pL each). A suspension of 200,000 beads pre-coated with anti-IFN-γ was subsequently 
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loaded onto the nanowell array and incubated for a period of 2 h at 37 °C. By analyzing an 

average of 10,182 ± 8,589 (mean ± s.d.) single cells matched to one or more beads within 

the nanowells, the frequency of the activated T-cell IFN-γ response was determined to be 

0.40 – 7.8 %. The magnitude of these responses were similar to those recorded by ELISpot 

[0.20 – 11.2 %], and results of both assays were significantly correlated (r2 = 0.87, p-value 

= 0.0008), demonstrating that beads can be efficiently utilized to capture cytokine secretion 

from single cells (Figure 55).  

 

Figure 55: Comparison of the bead assay with ELISpot for detection of 
single-cell IFNγ secretion of different effector cells (PBMC and 
TIL) at varying level of antigenic stimulation. 

In the absence of stimulation, the frequency of IFN-γ beads detected when 

incubated with T cells was < 1 in 10,000 and this set the limit of detection of our assay at 

0.01%. 
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3.3.3. In open-well systems, fractional occupancy of analyte on beads increases as the 

density of the antibody used to capture analyte decreases.  

As opposed to encapsulated systems, open-well configurations can be 

advantageous for the long term monitoring of cell fate and function since they allow 

continuous exchange of gases and nutrients. Furthermore, they avoid potential alterations 

of cellular behavior that can arise from the artificially high local concentrations of analytes 

commonly found in closed systems (118). A disadvantage of open-well systems is that the 

analyte secreted by an individual cell within a nanowell is subjected to persistent diffusion 

into the bulk medium, potentially lowering the sensitivity. We therefore sought to quantify 

the efficiency of analyte capture on beads by modeling a simplified open-well system using 

finite element simulations (Figure 56).  

 

Figure 56: Heat maps showing analyte concentration in liquid phase across 
the well (right) and on the bead surface (left) after 5 hours of 
secretion in a 40 μm nanowell.  

 

The concentration of analyte in liquid media (C) can be described using Fick`s 2nd law, 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝐷𝐷∇2𝐶𝐶 ,                                                         (1)  

 

where D represents the diffusion coefficient of the analyte.  

Since the walls of the PDMS can be assumed to be largely impermeable to proteins 

(119), the flux at these boundaries was set to zero. At a constant rate of analyte secretion 

from the cell (10 molecules/sec), the mass balance of analyte concentration on bead surface 

(Cs) was determined by the equation: 

 

𝜕𝜕𝐶𝐶𝑠𝑠
𝜕𝜕𝜕𝜕

=  𝐷𝐷𝑠𝑠∇2𝐶𝐶𝑠𝑠 +  𝑘𝑘𝑜𝑜𝑜𝑜𝐶𝐶(𝜃𝜃0 −  𝐶𝐶𝑠𝑠) −  𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑠𝑠   ,                               (2) 

 

where Ds represents diffusivity of analyte on bead surface, kon and koff represent kinetic 

binding constants determined by strength of capture antibody – analyte interaction and θ0 

represents number of capture antibodies available per unit surface area of the bead.  

The choice of parameter values (Figure 56) was based on commercially available antibody 

binding affinities, the known rates of cytokine secretion from T cells, and previously 

reported numerical simulations of closed systems (119).  

Initial concentrations of analyte in liquid media and bead surface were set to zero 

and increase in fractional occupancy (∯ 𝐶𝐶𝑠𝑠
θ0

) of the bead with time as the cell secretes the 

analyte was modeled. Upon validating the model with previously published data (119), we 

sought to optimize two key tunable variables, the size of beads and the surface density of 

capture antibodies to maximize fractional occupancy (and therefore the fluorescent pixel 

intensity). The simulations demonstrated that the fractional occupancy of all three bead 
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sizes increased linearly as a function of time (1–6 h), and that regardless of the incubation 

time, the 3 µm bead had a 1.8-fold and 2.7-fold higher fractional occupancy in comparison 

to the 5 µm and 7 µm beads (Figure 57).  

 

Figure 57: Fractional occupancy of beads of different sizes as a function of 
incubation time and their ability to capture analyte secreted from 
single cells. 

 

When the bead diameter was held constant (3 µm), but the binding site density was varied 

across three orders of magnitude, the beads with the lowest binding site density (10-9 

mol/m2) had the highest fractional occupancy (Figure 58).  



93 
 

 

Figure 58: Fractional occupancy of 3 μm beads as a function of incubation 
time when the binding site density was varied across three orders 
of magnitude. 

These results show that increased fractional occupancy is observed when the total 

number of binding sites is decreased by either decreasing the bead size, or binding site 

density, and are consistent with ambient analyte theory that predicts that higher sensitivity 

can be achieved by lowering the number of antibodies used to capture the analyte (120). 

Furthermore, for a nanomolar binder at low fractional occupancy (neglecting desorption), 

the simulations predicted that the kinetics of analyte capture is diffusion limited (Figure 

56), in agreement with previous studies on antibody microspots, closed-well systems, and 

two-compartment mathematical models (119, 121). It should however be noted that unlike 

microspot assays, the present system does not conform to ambient analyte conditions as 

depletion of analyte by capture on the bead surface is not negligible in comparison to total 

analyte available. 
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3.3.4. Simultaneous quantification of cytotoxicity and IFN-γ secretion in tumor-

specific CD8+ CAR+ T cells using TIMING.  

We have recently developed TIMING as a method to interrogate the dynamics of 

cell-cell interactions in high-throughput by utilizing nanowell grids and automated time-

lapse microscopy (112, 113). Since the end-point experiments confirmed the ability to 

detect IFN-γ from single T cells upon activation, and the modeling suggested that the beads 

should work well in an open-well system, we integrated the beads into the TIMING 

workflow to enable measurement of effector target interactions while also capturing any 

secreted IFN-γ protein, at single-cell resolution. We chose to interrogate the 

polyfunctionality of tumor-specific individual CD8+ T cells with regards to cytokine 

secretion and cytotoxicity. Genetically modified and propagated T cells were generated 

from the peripheral blood mononuclear cells (PBMC) of a healthy donor to enforce 

expression of a second generation CD19-specific CAR (designated CD19RCD28) that 

activates T cells via a chimeric CD3 and CD28 endodomain (Figure 59) (81).  

 

Figure 59: Schematic of effector cell (blue) that recognizes CD19 antigen on 
tumor cell (red) with second generation chimeric antigen receptor 
(CAR) that activates through CD3ζ and CD28 endodomains. 
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Subsequent to numeric expansion on activating and propagating cells (AaPC) for a 

period of four weeks, the CAR+ T cells were predominantly CD8+ (>99%, Figure 60). 

 

Figure 60: Phenotypic characterization of CAR+ T cells with flow cytometry 
showed that the cells were predominantly CD8+ with >90% 
expression of CAR. 

Phenotypic characterization of the CD8+CAR+ T cells demonstrated that the 

dominant subset of T cells were naïve like (CD45RA+CD62L+, 60.7 %, Figure 61).  

 

Figure 61: Dot plots obtained by staining with CD62L and CD45RA showed 
that the dominant subset of CAR+ T cells (60.73 %) were naïve-
like. 

The ability of these T cells to specifically secrete IFN-γ upon interaction with cells 

presenting CD19 antigen was confirmed by co-incubating with both NALM-6 tumor cells 

(CD19 positive) and EL4 cells (CD19 negative, Figure 62).  
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Figure 62: Intracellular staining confirmed the ability of CAR+ T cells to 
specifically upregulate IFNγ expression upon recognition of target 
cells expressing cognate antigen. Effector: Target ratio 1:5. 

CAR+ T cells as effectors, NALM-6 tumor cells as targets, and pre-functionalized 

beads coated with IFN-γ capture antibody as cytokine sensors, were loaded sequentially 

onto a nanowell grid array. Effector-mediated tumor lysis was detected using Annexin V 

staining and every individual nanowell (14,400 wells, 64 pL each) was profiled for a period 

of 5 h, and cytokine secretion was quantified by the formation of immune-sandwiches on 

beads (Figure 63).  

 

Figure 63: Combining TIMING with bead based assays to interrogate multi-
functionality of CAR+ T cells at the single-cell level. 
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We modified our previously-reported image analysis algorithms to not only enable 

the automated segmentation and tracking of cells, but to now facilitate the identification of 

fluorescence intensity on the beads to report on the secretion of IFN-γ. After a simple 

diameter-based gating, we identified 1,178 wells of interest containing a single T cell, 2 to 

5 tumor cells, and one or more beads. Nanowells containing multiple tumor cells were 

specifically chosen to allow observation of individual T cells participating in multiple 

killing events. Within this subset, since every T cell was incubated with multiple tumor 

cells, three separate functional definitions were employed: serial killer cells that killed at 

least two tumor cells, mono-killer cells that killed exactly one tumor cell, and IFN-γ 

secreting cells. Subsequent to conjugation to one or more tumor cells, IFN-γ secretion was 

the most commonly observed function recorded in single T cells (64.2 %, Figure 64).  

 

Figure 64: Venn Diagram  showing breakdown of CD8+ T cell functionality 
based on killing (no kill, kill one, and kill multiple) and/or IFNγ 
secretion 
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Polyfunctional cells defined as either CAR+ T cells that killed multiple tumor cells 

(44.1 %) or cells that were able to kill at least one tumor cell and simultaneously secrete 

IFN-γ was only slightly lower (53.6 %, Figure 64). The subset of cells capable of both 

multi-killing and IFN-γ secretion comprised 30% of the population. 

3.3.5. Killer CAR+ T cells detach faster from target cells in comparison to IFN-γ 

secreting cells.  

Since TIMING assays, as described above, have the ability to monitor both conjugate 

formation and functional readouts, and since the CD8+ T cells uniformly expressed the 

high-affinity immunoreceptor, we quantified the threshold for activation by analyzing the 

total duration of conjugation prior to functional readout. T cells that only secreted IFN-γ 

(monofunctional), exhibited the longest conjugation durations of all functional T cells 

(159±8 min). This duration was significantly longer than cells that killed either only one 

tumor cell with (94±5 min) or without IFN-γ (89±6 min) secretion, or multiple tumor cells 

with (74±2 min) or without IFN-γ (79±4 min) (Figure 65). * P<0.05, ** P< 0.01, *** P< 

0.001, and **** P< 0.0001. 

These results suggest that the duration of conjugation between T cells and tumor 

cells that results in killing has a lower threshold for functional activation in comparison to 

IFN-γ (monofunction). To define the kinetics of the interaction between individual T cells 

and tumor cells that lead to subsequent killing, two interaction parameters, tContact, 

cumulative duration of conjugation between first contact to target death; and tDeath, time 

between first contact and target apoptosis, were computed (Figure 21). The tContact 

parameter reflects the duration of stable conjugation and tDeath reflects the kinetics of target 
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apoptosis. For both mono-killers and serial killers, tContact was significantly lower than tDeath 

demonstrating that T cell detachment preceded tumor-cell Annexin V staining (Figure 66). 

 

Figure 65: Cumulative contact duration between effector and targets (min) 
leading to the different functional outcomes. 

 

Figure 66: tContact/tDeath comparison for multi-killer vs mono-killer T cells.  
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Second, the total duration of conjugation of all killer T cells (81±2 min) was lower than 

non-killer T cells (154±6 min) [p-value <0.0001, Figure 67]. 

 

 

Figure 67: Comparison of duration of conjugation of killers and non-killer T 
cells (irrespective of IFNγ secretion). 

These results suggest that while at the single-cell level the relationship between exact time 

at which single T cells terminate the synapse and time of target cell apoptosis is 

heterogeneous; in aggregate killer T cells terminated the synapse upon initiation of killing 

but prior to appearance of the apoptosis markers on tumor cells. 
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No significant differences were observed in the tContact when comparing serial killer CAR+ 

T cells, with or without IFN-γ secretion (Figure 68), suggesting that killing is the dominant 

behavior in determining duration of conjugation.  

 

 

Figure 68: Kinetics of killing based on tContact of mono-killer and multi killer 
(first, second, and third target killed respectively) for subsets of 
effector that participate in killing and/or IFNγ secretion. 

The frequency of individual serial killer T cells however that either secreted IFN-γ 

(353/1178 = 30 %) or did not secrete IFN γ (166/1178 = 14 %) was not significantly 

different from T cells that only secreted IFN-γ (147/1178 = 12 %) (Fisher 2x2 test, p-value 
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= 0.2) confirming that shorter duration of conjugation still provided sufficient activation 

for cytokine secretion.  

 

Figure 69: Kinetics of killing based on and tDeath of mono- and multi-killer 
(first, second, and third target killed respectively) for subsets of 
effector that participate in killing and/or IFNγ secretion. 

We next compared mono-killers and serial killers, with and without concomitant IFN-γ 

secretion, measured by tContact and tDeath. In order to facilitate direct comparisons, each of 

the targets killed by the serial killer T cells was sorted based on the order in which they 

made contact with the effector cell. In the absence of IFN-γ secretion, serial killer effector 

cells showed no significant differences in either tContact (69±5 min) or tDeath (94±6 min) in 
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killing of the first target encountered, in comparison to mono-killers (tContact: 89±6 min, 

tDeath: 117±7 min, Figure 68 and 69).  

In contrast, serial killer effector cells that also secreted IFN-γ showed a decreased 

duration of conjugation (tContact: 68±3 min) and an increased efficiency (tDeath: 93±4 min) 

in killing of the first target encountered, in comparison to mono-killers that secreted IFN-

γ (tContact: 94±5 min, tDeath: 121±5 min). This difference was only observed for the first 

target since subsequent targets killed by the serial killers did not show significant 

differences in either tContact or tDeath (Figure 68 and 69). In summary, these results showed 

that polyfunctional T cells that are able to participate in both serial killing and secrete IFN-

γ, have a lower threshold for the duration of activation prior to a functional response.  

3.3.6. Basal motility when not in target cell contact may be used to identify serial killer 

polyfunctional CAR+ T cells.  

Next, we investigated if intrinsic T-cell behavioral parameters like basal motility 

(dWell: average mean displacement within the nanowell over 5 minute periods) prior to 

tumor cell conjugation, might offer insights into their functional capacity subsequent to 

tumor cell conjugation. Individual CAR+ T cells that failed to display any functionality 

(killing/IFN-γ secretion) upon tumor cell conjugation also had the least out-of-contact 

motility (dWell: 1.3 ± 0.1 µm) of the T cells subgroups profiled (Figures 70). In contrast, 

effector cells that were able to kill multiple tumor cells and secrete IFN-γ exhibited a 

significantly higher out-of-contact motility (dWell: 2.2 ± 0.1 µm) compared to those that 

only secreted IFN-γ without killing (dWell: 1.6 ± 0.1 µm), and the aforementioned non-

functional T cells (p-value = 0.043 and 0.002 respectively) (Figure 70). 
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Figure 70: Average displacement, dWell (μm) calculated for different 
combination of functionality of killing and IFNγ secretion of 
CAR+ T cell. 

  This observation of higher motility was also recorded with serial killer effector 

cells that did not secrete IFN-γ (dWell: 2.4 ± 0.2 µm) in comparison with effector cells that 

only secreted IFN-γ or non-functional cells (p-value =0.007 and 0.0002 respectively). 

Remarkably, these observations, however were not true for effector cells that were only 

capable of killing one tumor cell, as their average displacement were not significantly 

higher compared to those that did not kill, suggesting that serial killers perhaps benefit 

from the high motility allowing for rapid discovery of targets within the local micro-

environment. These observations were only true for the out-of-contact motility and not 
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surprisingly, regardless of the function elicited, all functional effector cells showed no 

differences in motility during conjugation with the tumor cell (Figure 71). 

 

Figure 71: Average displacements of effector cells during conjugation of 
effector with target cells per frame interval (5 min) at E:T ratio of 
1:2-5 

3.3.7. Transcriptional profiling of motile CAR+ T cells reveals an activated 

phenotype.  

Since the TIMING results indicated that the basal motility may be able to identify 

polyfunctional killer cells, we next sought to define the underlying molecular profile of 

motile CD8+ T cells. Accordingly, a set of 90 genes relevant to T-cell function were 

identified, and multiplexed, single cell, RT-qPCR was performed (Table 4). In order to 

study the basal motility of these CD8+ T cells, a TIMING experiment was set up to track 
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individual live T cells without the influence of the tumor cells. Single cells were picked up 

based on their motility profile: “motile or high motility” (dwell: 2.6 ± 0.8μm, n=41) or “non-

motile or low motility” (dwell: 0.8 ± 0.4μm n=43) and their transcriptional profile 

determined (Figure 72 and Figure 73). X, Y coordinates are shown in microns relative to 

initial cell position set to the origin. Color map represents aspect ratio of cell polarization 

with red denoting circular cells and increasing shades of green and blue denoting elongated 

cells. 

 

 

Figure 72: Representatives examples of high and low motility cell tracks 
during the 3 hour TIMING experiment.  
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Figure 73: Position tracks of high and low motility CD8+ T cells during 3 
hours of TIMING experiment, showing the larger scanning area 
and the lower circularity of high motility cells. 
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After microfluidic qPCR, and subsequent to filtering, t-test comparisons of 62 

genes between the motile and non-motile groups showed that 15 genes had significantly 

altered level of expression (p < 0.05) and more than a 1.5 fold change: CD244, CD58, 

LAG3, CTLA4, CD86 (activation markers); CCR1, CXCR3, 1L18R1, IL2RB, IL4R 

(chemokine and cytokine receptors), and GATA3 (transcription factor) were upregulated, 

while CX3CR1, CCR4 (chemokine receptors); CD69 (activation marker), and IRF4 

(transcription factor) and were down-regulated (Figure 74).  

F  

Figure 74: Volcano plot demonstrating the significance (t-test) and 
magnitude of fold-change comparing high and low motility CD8+ 
T cells. 

Unsupervised hierarchical clustering (analysis with MeV, Pearson correlation and 

complete linkage) (122) was performed with gene- and cell-normalized data of these 15 
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genes, and the sample clustering achieved a classification according to the known 

categories (motile vs. non motile) with 83% accuracy (Figure 75). * and + denote the 

individual motile and non-motile cells whose tracks are shown in Figure 72. When we 

repeated the agglomerative clustering with the motility-specific features dwell and aspect 

ratio (AR, ratio of minor/major axes,) along the genes, the cluster tree structure was largely 

unaltered and dwell was closely clustered with expression of CD244 and IL2RB, while AR 

was highly correlated to IRF4 (Figure 76). 

 

Figure 75: Unsupervised hierarchical bi-clustering of samples and of the 
genes identified as having a significant difference (p-value < 0.05) 
and net fold-change of >1.5.  
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Figure 76: Unsupervised hierarchical bi-clustering represented as heatmap of 
samples and of the genes along with the average speed and average 
aspect ratio (Min/Max) of the individual T cells. 

While the comparisons of transcriptional profiles with student’s t-test and 

hierarchical clustering enabled us to infer differences between the motile and non-motile 

groups, we hypothesized that the heterogeneity of this cell population could be also 

described as a progression of cells characterized by gradual changes in gene expression 

from cell to cell. The set of fifteen differentially expressed genes  and the two motility 

parameters, dWell and AR, were used as the base set for the subspace trend discovery tool 

STrenD that identified ten genes considered to support the progression (Figure 77) (123). 

With the selected genes and features, STrenD outputs a tree structure representing 

the progression of cells identified by the input features (Figure 78). By visualizing and 

coloring the tree using TreeVis (124), we can clearly identify non motile cells clustered 

together at the center-right side of the tree, while motile cells split out of this pool into two 

branches, one with high expression of IL2RB, IL18R1, CD58, LAG3 and GATA3 (Figure 

69, upper left branch), one with low expression of these and with very low expression of 
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IRF4, but still with high motility and high CD244 expression (Figure 78, lower left 

branch).  

 

Figure 77: Trend discovery with STrenD allows selecting the genes that are 
the most relevant for description of the progressive states between 
cells 
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Figure 78: Visualization of the consecutives states in a tree shape structure 
illustrating how each gene localizes differentially with high or low 
motility cells. 

Consistent with the observations outlined here, network analysis using GeneMania 

(125) confirmed that the major pathways associated with the identified transcripts were 

related to positive T-cell activation and lymphocyte migration (Figure 79).  
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Figure 79: Protein interaction network analysis using Genemania of 
differentially expressed genes demonstrating their segregation 
into T-cell activation and cell migration pathways 

Lastly, since one of the major mechanisms of immediate cytotoxicity mediated by 

CD8+ T cells is through the granzyme B/ Perforin pathway, and since our TIMING results 

indicated that polyfunctional serial killer CD8+ T cells had a higher basal motility, we 



114 
 

quantified the differences in expression of these specific transcripts within motile and non-

motile cells. Although GZMB was not significantly differentially expressed, PRF1 

transcripts were detected at significantly higher levels in motile cells (p-value = 0.03, 

Figure 80). 

 

Figure 80: Comparisons of relative number of Granzyme B and perforin 
transcripts in high and low motility CD8+ T cells. 

 

3.4. DISCUSSION 

We have demonstrated an integrated and modular high-throughput analytical 

pipeline for combined functional and molecular profiling of T-cell behaviors. This single-

cell assay provides an integrated method which not only tracks the key functional attributes 

of T cells including motility, cytotoxicity, and cytokine secretion directly, but also serves 

as a front-end screen for identifying functional attributes that can be interrogated at the 

molecular level using multiplexed transcriptional profiling. Although we have 

demonstrated the application of this method in the context of T-cell behaviors, the platform 

can be adapted to other cell types for monitoring combined cellular behaviors, protein 

secretion, and transcriptional profiling. 
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The polyfunctionality of tumor-specific individual CD8+ CAR+ T cells, with 

regards to IFN-γ secretion and killing (and multi-killing) upon ligation with tumor cells 

was evaluated. Among all functional T cells, the group that secreted IFN-γ as a 

monofunction displayed the longest duration of conjugation to the tumor cell, in 

comparison to the T cells that participated in lysis of target cells. Since all T cells were 

uniformly modified with the CAR, and since the concentration of antigen on the target cells 

was uniform (Figure 16), our results reveal that the duration of stable conjugation leading 

to different functional outcomes (IFN-γ vs. killing) can be heterogeneous. Our results thus 

complement previous studies obtained by titrating antigen concentration to show that CD8+ 

T cells can form a short lytic synapse at low antigen densities, and a long stable stimulatory 

synapse leading to IFN-γ at high antigen densities (126, 127). Significantly, our results at 

the single-cell level suggest that detachment from target cells might be enabled by killing, 

and the decision to terminate conjugation can occur prior to Annexin V staining (Figure 

66-67). In tracking the frequencies of serial killer T cells with and without simultaneous 

IFN-γ secretion, no significant differences were observed, suggesting that the early 

termination of conjugation did not affect T-cell activation for IFN-γ secretion. Our results 

demonstrating at the single-cell level that the duration of conjugation of T cells to target 

cells might reflect different functional outcomes are in concordance with a recent report 

combining population level functional studies and single-cell calcium activation on 

mouse/human T cells which showed that failed target detachment can lead to prolonged 

IFN-γ hyper-secretion from T cells and that initiation of caspase within target cells likely 

enabled T cells to terminate the synapse (128). 
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In addition, tracking the displacement of CD8+CAR+ T cells revealed that 

polyfunctional cells and specifically serial killer T cells, exhibited elevated out-of-contact 

basal motility in comparison to either non-functional T cells, or those effector cells that 

only secreted IFN-γ. In order to gain molecular insights into the immunological state of 

highly motile cells, multiplexed transcriptional profiling was performed at the single-cell 

level, targeting genes associated with T-cell activation, differentiation and memory. 

Combined statistical testing using t tests and hierarchical clustering followed by 

progression discovery modeling identified a core set of immunological genes that may be 

useful in distinguishing motile and non-motile T cells. Consistent with TIMING 

observations that motile T cells are enriched within the polyfunctional subset, molecular 

profiling indicated that markers associated with recent activation including CD244 (2B4), 

CD58, LAG3, IL2RB (CD122), IL18R1, the chemokine receptor CXCR3 and the 

transcription factor GATA3 were upregulated within motile cells. Similarly, the transcripts 

for the pore forming protein, perforin, required for immediate cytotoxicity mediated by 

CD8+ T cells, were also upregulated within motile T cells (Figure 80). 

Individual T cells with increased motility also showed a matched increase in 

CXCR3 transcripts (Figure 81) which is one of the major chemokine receptors associated 

with trafficking to the tumor microenvironment and is expressed on activated TILs in 

diverse cancers including breast cancer and melanoma (129, 130).  

The expression of CXCR3 is up-regulated upon CD8+ T-cell activation, and in 

addition to its functional role in chemotaxis, CXCR3 derived signaling is believed to also 

affect the development of both effector and memory CD8+ T cells (131-133). Similarly, 
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the number of CD2 transcripts showed a positive correlation with T-cell motility (Figure 

82). 

 

 

Figure 81: Correlation between idealized numbers of CXCR3 transcripts and 
average speed of the cell (dwell) 

 

Figure 82: Correlation between idealized numbers of CD2 transcripts and 
average speed of the cell (dwell) 
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The dynamic molecular interaction between CD2 and its binding partner CD58 

facilitates T-cell recognition by stabilization of inter-cell contacts (134, 135). Since the 

single-cell transcriptional profiling indicated a matched up-regulation of CD58 and CD2 

on motile T cells (Figure 83), it is possible that these molecules can mediate homotypic T-

cell/T-cell interactions and cluster formation, both of which are known to promote T-cell 

activation, proliferation and differentiation in vitro and in vivo (136). Of note, CD244 was 

also upregulated on motile T cells and is a similar adhesion molecule that can regulate T-

cell homotypic interactions by binding to CD48 (Figure 84). We thus propose an integrated 

model that summarizes all of our results integrating motility, serial killing, IFN-γ secretion 

and transcriptional profiling (Figure 85). 

 

 

Figure 83: CD2 and CD58 expression are linearly correlated at the single-cell 
level. 
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Figure 84: LAG3, CD244 (2B4), GATA3 and IL18R1 transcripts are more 
highly expressed in high motility in comparison to low motility 
cells. 

 In summary, our integrated methodology combining functional and molecular 

screening enables investigation of complex cellular behaviors at single-cell resolution. Our 

modular and scalable method is suitable for screening combinations of the different T cell 

functions that might be required for the efficacy of T cells engineered with a panel of CARs 

and predicting whether an introduced immunoreceptor will result in therapeutic success in 

vivo (137). 
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Figure 85: Schematic summarizing integrated T-cell functionality 
The therapeutic potential of CAR+ T cells for treatment of B-cell malignancies 

raises the question whether similarly-engineered T cells with alternative specificities will 

also have anti-tumor effects in humans. Thus, the study of genetically modified CD19-

specific T cells serves as a foundation to advance our understanding of CAR+ T cells that 

target other hematologic malignancies and solid tumors. Currently, most investigators rely 

on mouse experiments to inform on which CAR design and TIL population to advance to 

human application, but this is not readily amenable to scale up. As demonstrated here, we 

propose that high throughput in vitro systems can be employed to evaluate the functional 

characteristics of panels of T cells before selecting subsets for preclinical and clinical 

translation. The implementation of the microscopy tools revealed in this report and the 

observation that motility correlates with killing of tumor cells may provide investigators 
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with an approach to identify genetically modified T cells without the need for testing in 

small animals.  
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