
Bioimage informatics

Automated detection of apoptotic bodies and cells in

label-free time-lapse high-throughput video microscopy

using deep convolutional neural networks

Kwan-Ling Wu1, Melisa Martinez-Paniagua1, Kate Reichel1, Prashant S. Menon1, Shravani Deo1,

Badrinath Roysam2,*, Navin Varadarajan 1,*
1William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
2Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, United States

*Corresponding authors. William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United
States. E-mail: nvaradar@central.uh.edu (N.V.); Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, United States.
E-mail: broysam@central.uh.edu (B.R.)

Associate Editor: Hanchuan Peng

Abstract
Motivation: Reliable label-free methods are needed for detecting and profiling apoptotic events in time-lapse cell–cell interaction assays. Prior
studies relied on fluorescent markers of apoptosis, e.g. Annexin-V, that provide an inconsistent and late indication of apoptotic onset for human
melanoma cells. Our motivation is to improve the detection of apoptosis by directly detecting apoptotic bodies in a label-free manner.

Results: Our trained ResNet50 network identified nanowells containing apoptotic bodies with 92% accuracy and predicted the onset of
apoptosis with an error of one frame (5 min/frame). Our apoptotic body segmentation yielded an IoU accuracy of 75%, allowing associative
identification of apoptotic cells. Our method detected apoptosis events, 70% of which were not detected by Annexin-V staining.

Availability and implementation: Open-source code and sample data provided at https://github.com/kwu14victor/ApoBDproject.

1 Introduction

In oncology, immunotherapy modalities have demonstrated
durable clinical responses and achieved unprecedented success
(Schuster et al. 2006, Oiseth and Aziz 2017, Esfahani et al.
2020). For example, genetically modified lymphocytes pro-
vide long-term efficacy against leukemias and lymphomas
and earned approval from the US Food and Drug
Administration (Le et al. 2018, Bouchkouj et al. 2019,
O’Leary et al. 2019). This success has sparked a strong inter-
est in evaluating therapeutics for other types of cancer (includ-
ing solid tumors) and personalizing treatments (Marofi et al.
2021). In this context, the advancement of high-throughput
assays is crucial for detailed profiling of cellular activities, es-
pecially cell–cell interactions and killing events, for advancing
cancer immunotherapy (Ramm 1999, Merouane et al. 2015,
Lu et al. 2019).

In cancer immunotherapy, programmed cell death (PCD) is
one of the principal cellular mechanisms for tumor elimina-
tion (Lawen 2003, Wong 2011, Panch et al. 2019).
Therefore, the detection and quantitative profiling of PCD are
of central importance for the discovery, validation, and trans-
lation of immunotherapeutics. Conventional methods lever-
age the binding specificity of molecular markers for the
robust detection of PCD (Vermes et al. 1995, Zhang et al.
1997, Kyrylkova et al. 2012, Guo et al. 2021). For instance,

the fluorophore-conjugated Annexin-V marker detects apo-
ptosis by targeting phosphatidylserine (PS) exposure toward
the outer leaflet of the apoptotic cell membrane (Lee et al.
2013). However, using molecular markers is a restrictive pro-
cess with multiple drawbacks, including biochemical pertur-
bation of cells, phototoxicity, the need for a dedicated
fluorescent channel (a precious resource in high-throughput
time-lapse imaging), and signal bleed-through (Niu and Chen
2010, Huh et al. 2012, Skylaki et al. 2016). In this context,
phase-contrast modalities offer essential advantages. They not
only avoid the toxicity of fluorescent labels but also provide
the potential for earlier detection and a more detailed view of
cellular processes. Unfortunately, the complexity, subtlety,
and variability of the visual cues in phase-contrast videos
have been a barrier to automating the visual analysis. The
emergence of deep neural networks makes it possible to de-
velop robust and sophisticated automated computer vision
systems for tackling these tasks in high-throughput assays.

Previous works to detect PCD have explored non-invasive
morphology-based apoptosis detection leveraging visual fea-
tures like nuclei condensation, membrane blebbing, cell shrink-
age, and change in cell geometry/texture (Huh et al. 2012,
Mobiny et al. 2020, La Greca et al. 2021, Kabir et al. 2022). In
this study, we focus on the direct detection of membrane-
bound vesicles, known as apoptotic bodies (ApoBDs), from ap-
optotic cell disassembly (Otsuki et al. 2003, Xu et al. 2019)
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(Fig. 1A). These small extracellular vesicles (0.5–2.0 lm in
diameter) are often visible beyond the cell body, and previous
studies on PCD have largely ignored them. Analyzing
ApoBDs serves two purposes. First, it can strengthen auto-
mated apoptosis detection by leveraging additional visual cues.
Second, it can provide valuable data of biological interest.
Aside from indicating the induction of apoptosis, ApoBDs also
play essential roles in intercellular communication. They carry
a variety of molecular cargoes, including nucleotides and
proteins (Casciola-Rosen et al. 1994, Halicka et al. 2000,
Schiller et al. 2008, Turiák et al. 2011), which can induce im-
munity, tissue regeneration, and even pathogen infection
(Kogianni et al. 2008, Berda-Haddad et al. 2011, Singh et al.
2012, Li et al. 2014), following phagocytosis. For these rea-
sons, we explored a new approach to ApoBD-based apoptosis
detection leveraging deep-learning-based computer vision
algorithms.

Convolutional neural networks (CNNs) and vision trans-
formers (ViT) have demonstrated the capability of leveraging
abstract features in medical images for high-level tasks like
cell phenotyping, disease diagnosis, and lesion detection
(Hesamian et al. 2019, Lugagne et al. 2020, He et al. 2022).
Previous works on apoptosis detection also proved that deep
CNNs sense subtle early changes in the morphologies of apo-
ptotic cells. This work adds a new dimension to the prior
studies by analyzing ApoBDs. At first glance, these small and
sparsely distributed objects appear as “noise” in images.
However, we show that a systematic label-free approach to
ApoBD detection and profiling enables the more accurate and
sensitive detection of PCD.

The training of deep neural networks on small biomedical
datasets relies intensely on human annotation, so we describe
resource-efficient methods to train models for tackling distribu-
tions of ApoBDs. We created our ApoBD analysis pipeline with
sparse labels and deployed it on label-free images. Finally, we
provide two examples of how our approach complements

conventional apoptosis detection and enables further molecular-
level studies to advance cell-based immunotherapy.

2 Materials and methods

2.1 Image data acquisition and preprocessing

We recorded the interactions between effector [ex vivo-ex-
panded tumor-infiltrating lymphocytes (TIL)] and target
(Mel526 melanoma cell line) cells within polydimethylsilox-
ane nanowell arrays fabricated in-house following published
protocols (Liadi et al. 2015) (Fig. 1B). To differentiate differ-
ent cell types, we labeled TILs with Green Fluorescent Cell
Linker (PKH67) and melanoma cells with Red Fluorescent
Cell Linker PKH26 (both from Sigma-Aldrich and at 1 lM)
following the manufacturer’s protocol. After loading the cells
to the nanowell chips at the concentration of 2 million effec-
tor cells and 1 million target cells/ml, we applied a fluorescent
apoptosis marker by immersing the entire chip into phenol
red-free cell-culture media containing Annexin-V, conjugated
to fluorophore Alexa Fluor 647 (from Life Technologies), at a
dilution of 1:60. Our imaging system, Time-lapse Imaging
Microscopy In Nanowell Grids (TIMING) (Merouane et al.
2015, Lu et al. 2019), is a high-throughput, multi-channel
profiling approach to time-lapse images at the single-cell level.
An Axio fluorescent microscope (Carl Zeiss), equipped with
20� 0.8 NA objective and a scientific CMOS camera (Orca
Flash 4.0), took images of the chip every 5 min in a humidity/
CO2 controlled chamber. With ZEN software’s tile function
locating the same subset of nanowells in each view during im-
aging, we obtained time-lapse image sequences of four chan-
nels: bright field phase-contrast images; and three fluorescent
channels for PKH26, PKH67, and Annexin-V, respectively.

After imaging, we used ZEN software (Carl Zeiss GMBH)
to transform the raw images of nanowell subsets into 16-bit
Tagged Image File Format, followed by data processing using
the TIMING pipeline (Lu et al. 2019). The TIMING pipeline
consists of deep-learning modules for nanowell detection and

Figure 1. The proposed label-free method for detecting ApoBDs complements apoptosis detection using Annexin-V fluorescence by analyzing the visual

indications apparent in phase-contrast imaging (Fig. 7 presents that only 30% of apoptotic cells exhibited a clear Annexin-V signal). Figure created with

BioRender.com. (A) ApoBDs are extracellular vesicles produced by apoptotic cells carrying various molecular cargoes of interest. (B) Schematic illustration

of the high-throughput TIMING. The system profiles cell–cell interactions at scale. (C) Four sample nanowells illustrate the variable Annexin-V signal

within apoptotic cells. In Nanowells 1 and 2, the Annexin-V signal is clear, whereas, in Nanowells 3 and 4, the Annexin-V signal is absent despite the

apparent onset of apoptosis in the phase images. The solid arrows highlight ApoBDs release. Dashed arrows highlight cells with Annexin-V staining.
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cell detection, from which we obtained multi-channel images
of individual nanowells. In addition, the TIMING pipeline
also provides high-level information on cellular interactions
within individual nanowells: first, the cell detection module
counts the number of effector and target cells, from which we
can find the target cell-containing nanowells. Second, using
the Otsu thresholding-based binarization (Otsu 1979), the
cropped fluorescent images delineate the immune synapses
(ISs). Finally, we define if a cell expresses Annexin-V by com-
puting the intersection over union (IoU) value of the binarized
Annexin-V mask and cell mask from the detection module.
We defined the IoU of two binary masks, A and B as:
IoU maskA; maskBð Þ ¼ AreaðmaskA and maskBÞ

AreaðmaskA or maskBÞ .

Finally, to validate the quality of our Annexin-V staining as
ground truth (GT), we conducted a separate TIMING experi-
ment. The only differences in this experiment are that we used
NALM6 tumor cells only and that we imaged the chip in a
3D setup, which led to a lower throughput. We imaged nine
different fields of view at 10 different horizontal planes, in
one-micron steps, to collect 3D image stacks. Then, we col-
lected image stacks of 84 nanowells where the TIMING pipe-
line (Lu et al. 2019) detected cells. For each Annexin-V image
stack, we computed the Pearson correlation coefficient (PCC)
of all possible pairs of two slices and took the average over
nanowells. As shown in the Supplementary Figure, we ob-
served no PCC lower than 0.95 from the heat map. This con-
firmed that during high-throughput TIMING imaging,
regardless of the choice of the exact 2D image, the Annexin-V
signal observed will be a reliable indicator of apoptosis. Since
2D imaging provides reliable Annexin-V label, high imaging
rate, and high temporal resolution, it is significantly prefera-
ble to 3D imaging.

2.2 ApoBD image sequence processing workflow

We profiled cell–cell interactions from three Mel526-TIL
TIMING experiments with a data processing pipeline consisting
of two deep CNN models (Fig. 2). For each image sequence, we
first applied an image classifier to detect which frames demon-
strate the release of ApoBDs within the nanowells. Next, to find
the onset of apoptosis, we used a three-frame temporal

constraint to determine if individual frames detected were actual
death events or sporadic noise. When we detect ApoBDs in three
consecutive frames, we assign the starting frame as the time of
onset of apoptosis. Finally, to identify the apoptotic cell within
the nanowell, we used the second segmentation model and the
TIMING algorithm (Lu et al. 2019) to generate instance masks
for ApoBD and cells, respectively. After demarcating individual
ApoBDs and mapping them to all cells, we assigned the cell with
the least average distance to ApoBDs as the apoptotic cell.
The output can thus identify the apoptotic cell and the time of
induction of PCD.

To map PCD to effector-mediated killing, we performed
cell tracking with the TIMING pipeline to determine if there
was an effector–target cell contact prior to the detection of
ApoBDs and PCD. A qualified contact event must have over-
lapping masks for more than three consecutive frames. We
also examined if the Annexin-V signal lights up for each
ApoBD release event by computing the IoU of the cell body
mask and the Annexin-V mask generated by Otsu threshold-
ing. We consider the Annexin-V signal with an IoU above 0.1
as valid.

2.3 Single-frame classifier for detecting the

presence of ApoBD

Our proposed data processing pipeline starts with an image
classifier detecting the presence of ApoBDs. To train such a
module, we built the classification dataset for the existence of
ApoBD. Interestingly, even though the clear visual cue of
ApoBDs was available, we spotted that the Annexin-V stain-
ing could not reliably indicate cell death (Fig. 1C), making
manual annotation necessary for generating robust GT.
Hence, with the help of trained biologists, we obtained a data-
set with 7884 images with an ApoBD positive rate of 40%,
and we used 75% of these for cross-validation experiments
(Fig. 3).

We trained five ImageNet (Krizhevsky et al. 2017) pre-
trained image classification models to classify the presence of
ApoBD: AlexNet, ResNet18, ResNet50 (He et al. 2016),
Inception (Szegedy et al. 2016), and ViT B-16 (Dosovitskiy
et al. 2020). Previous works (Nawaz et al. 2018, Zhang et al.

Figure 2. Image analysis workflow for label-free analysis of ApoBDs. Starting from a phase-contrast video image sequence, we first screen nanowells for

the presence/absence of ApoBDs using a deep neural network. Next, we look for three consecutive frames containing ApoBDs to quantify the time of

cell death. Finally, we segment individual ApoBDs using a second deep neural network and identify the apoptotic cells by association. Figure Ccreated

with BioRender.com.
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2019, Wang et al. 2020, Sarwinda et al. 2021, Zhou et al.
2022) have demonstrated the capability of these CNNs on
medical image classification and made leveraging these off-
the-shelf models an efficient choice. We picked AlexNet as a
comparison for its lower depth (nine). Two residual networks,
ResNet18 and ResNet50, will demonstrate how residual con-
nection increases the number of layers (18 and 50) and bene-
fits network performance. On the other hand, the Inception
network extracts high-level features through factorized con-
volution layers, and the ViT leverages the attention mecha-
nism to learn long-term feature dependency. Taking these two
models into consideration enables an analysis of these fea-
tures. We provide more details about CNN models in
Supplementary Figures.

We adopted the original image classification models and set
the dimension of the last fully connected layer to two. To
compare the models’ performance, we split the dataset to con-
duct 5-fold cross-validation, during which the images from
the same nanowell will stay in the same subset to ensure data
independence. The Adam optimizer (Kingma and Ba 2014)
with an L2-loss regularization (Phaisangittisagul 2016) coeffi-
cient of 10–5 trained all models using the cross-entropy loss
function (Mao et al. 2023) at a learning rate starting at 10–4
and dropping 5% every 10 iterations. We augmented the
dataset with random rotation, brightness, and contrast

adjustment operation and trained the model at the batch size
of 200 for 50 iterations. To compare different models, we
tracked four performance matrices: accuracy, precision, re-
call, and F1-score, against the testing set during cross-
validation and took the average of the best performance of
each fold. Considering the use of ImageNet for transfer learn-
ing, we also normalized the data w.r.t. the mean and variance
of the ImageNet dataset.

2.4 Determining the onset of apoptosis in image

sequences

The onset of apoptosis provides critical information for time-
lapse assays. To obtain such temporal information from inde-
pendent predictions made by the image classifier, we applied
a three-frame temporal constraint on classification results.
The constraint of three, we chose is an empirical number that
fits our data best. To elaborate, for TIMING data, the thresh-
old at one or two frames will be too sensitive and introduce
false positive detection due to noise. On the other hand, using
a threshold higher than four means the ApoBD has to be
recorded for more than 20 min, which can cause false negative
results. To test the accuracy of the proposed method, we cre-
ated synthetic image sequences by concatenating non-
repeating images from the validation dataset at random. For
each 10-frame long image sequence, we randomly assigned

Figure 3. Sample images illustrating the variations in the appearance and complexity of ApoBDs and apoptotic cells in phase-contrast images. Nanowells

labeled with ApoBD- do not contain ApoBDs, whereas those labeled with ApoBDþ do. (A) An apoptotic cell can release a variable number of ApoBDs (the

arrows point out some examples). (B) The ApoBDs are motile and variable in appearance, as exemplified by the ApoBDs indicated by the arrows. (C)

Illustrating the variable sizes of ApoBDs. (D) Illustrating the cell-morphological changes that accompany the release of ApoBDs.
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the position and number of ApoBD positive frames. A se-
quence with more than three consecutive positive frames
qualifies as an apoptosis event, with the first positive frame as
the time of apoptosis. We created 300 image sequences for ap-
optosis and non-apoptosis events, and up to half of the frames
in a sequence would be ApoBD positive.

Similarly, we applied the same three-frame constraint to the
prediction from the trained image classifiers and calculated
the difference between apoptosis time prediction and the GT
to estimate our approach’s performance. For simplicity, if the
prediction misses an apoptosis event or gives a false apoptosis
event, we will assign an error of 10 frames (length of
sequence).

2.5 Mapping ApoBD to the dead cell through

segmentation

There are two primary approaches to dead cell identification:
Annexin-V marker-based signal intensity thresholding (pri-
marily detecting apoptosis) and morphology-based death de-
tection (broader definition of cell death). Nevertheless, as
previously mentioned, the former provides poor robustness in
our system, while the latter is limited for three reasons.
Firstly, cells releasing ApoBDs can have late or no change in
morphology (Supplementary Videos). Secondly, previous
morphology-based approaches require the robust GT of Mel-
526 cells. However, the unreliable Annexin-V staining makes
generating GT difficult. Finally, the ApoBD may introduce
noise and negatively affect cell segmentation and, thus, the
death detection performance. In other words, an alternate ap-
proach is necessary to leverage this critical visual cue for the
dead cell. Therefore, we determine dead cells by mapping
ApoBDs back to cells, where an ApoBD segmentation model
is necessary.

We created a segmentation dataset of ApoBD through the
following steps to train an image segmentation model: first,
we rescaled the pixel intensity of all images to the range be-
tween 0 and 255 (8 bits/pixel) and delineated the cell masks
using the TIMING pipeline (Lu et al. 2019). The next step
was the blob detection using Laplacian of Gaussian kernel to
find the centers of each ApoBD. Next, we applied the flood-
fill algorithm at each blob center detected to get regions of in-
terest (RoIs) representing individual ApoBDs. To ensure the
quality of RoIs, we chose the intensity tolerance that results in
the RoI area closest to the circular RoI size from blob detec-
tion for each ApoBD. Afterward, we rejected RoIs with low
aspect ratio or high area as blob detection can erroneously
pick up the edge of nanowell or other noises. The optimal
threshold we found for filtering was 0.85 for the aspect ratio
and between 20 and 200 pixels for the area. Since the last step
may exclude the mask of an ApoBD difficult to segment (false
negative), we removed such objects from the image through
the median blur using a disk-shaped kernel with a radius of
three pixels. We only applied the median kernel within an RoI
defined by Grad-CAM algorithms (Selvaraju et al. 2017)
based on the trained classifier to only remove necessary fea-
tures. As a result, we created a training dataset with 1816
images and 3572 RoIs for ApoBDs, and a validation dataset
with 304 images and 520 ApoBD RoIs.

We trained a MaskRCNN model (He et al. 2017) to detect
ApoBDs in these processed images, as the model has demon-
strated exceptional results in instance segmentation for medical
images (Anantharaman et al. 2018, Johnson 2020, Jin et al.
2021, Padma et al. 2022). The model has the ResNet50

architecture for feature extraction backbone, and the weights
are pre-trained on ImageNet. After feature extraction, the region
proposal network (RPN) (Ren et al. 2015) generates region pro-
posals called anchors to differentiate foreground and back-
ground, for which we set the Non-Maximum Suppression
(Hosang et al. 2017) threshold at 0.7 to control the number of
overlapping anchors. Within each foreground proposal, the
mask head of the network (called MRCNN) generates a pixel-
level mask for each object. Hence, the optimization of the
MaskRCNN model uses the mask loss of the MRCNN, the
bounding box loss of both MRCNN and RPN, and the class
loss of both networks as its loss function (He et al. 2017). We
trained the model for 100 iterations with stochastic gradient de-
scent optimizer (Ruder 2016) with a learning rate of 10–3, learn-
ing momentum of 0.9, and L2 regularization coefficient at 10–4.
After training, we chose the best set of weights based on the best
loss for the validation dataset.

3 Results

3.1 Deep neural networks accurately detect the

presence of ApoBDs in single frames

To detect the presence of ApoBDs in single frames to screen
for PCD, we evaluated the performance of classifiers. We
found that the deeper CNNs outperformed other models in
the 5-fold cross-validation experiment. The Inception net-
work achieved the best accuracy (93% 6 0%), precision
(91% 6 1%), and F1 score (90% 6 1%), and the ResNet50
network had the best recall rate at 92% 6 2% (Fig. 4A).
Compared with previous reports on biomedical image classifi-
cation, the performance we achieved using deep CNNs is
comparable to those for other datasets (Habibzadeh et al.
2018, Pavillon et al. 2018, Acevedo et al. 2019, Nguyen et al.
2019, Ayyappan et al. 2020, Mobiny et al. 2020). Despite the
varying image type and task difficulty, most studies reported
an accuracy between 85% and 95%. Consequently, we infer
that the CNNs learned meaningful features to detect ApoBDs.

On the other hand, due to the lower depth, AlexNet learned
less relevant features and underperformed (Fig. 4A). On the
contrary, ResNet18 achieved performance similar to
ResNet50, indicating the power of residual connections.
Moreover, ViT did not outperform deep CNNs for our task.
ViT has outperformed CNNs previously (Bhojanapalli et al.
2021, Perera et al. 2021, Xiao et al. 2023), but such perfor-
mance requires pre-training with a large dataset, a sizeable
training set, and sometimes architecture modification from
the original ViT (Krishnan and Krishnan 2021, Zhang and
Wen 2021, Tanzi et al. 2022). Our results showed that the
small dataset size limited ViT’s effectiveness and that the lo-
cally distributed features are as relevant as globally distrib-
uted ones.

Furthermore, we compared deeper CNN (Inception) and
AlexNet by visualizing images that only the former classified
correctly (Fig. 4B). We inferred that Inception outperformed
in learning abstract, high-level features. Our classification
task is difficult as multiple stages of PCD share similar mor-
phologies, and moving ApoBDs are usually in poor focus. For
example, in phase-contrast images, circular blobs are visible
before (from cell bubbling) and after the release of ApoBD.
Therefore, a robust classifier has to learn and detect such ab-
stract concepts. While the AlexNet was likely too sensitive to
apoptosis-associated morphologies, the Inception network
made more accurate predictions when there were confusing
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features associated with PCD (left half of Fig. 4B) and out-of-
focus ApoBDs (right half of Fig. 4B). In short, deeper CNNs
like the Inception network are preferable for our task as they
resolve visual ambiguity.

Next, we examined the Inception’s performance with pre-
diction examples in the format of a confusion matrix
(Fig. 4C), from which we focused on incorrect predictions to
find the source of error. In addition to the aforementioned vi-
sual confusion, the lack of temporal information limited our
classifiers’ performance. Our trained biological professionals
created the dataset with access to the complete time-lapse
sequences, but image classifiers took single independent
frames as input. However, temporal information strongly
affects how humans recognize subtle features in images, espe-
cially at the beginning of the ApoBD release. For instance, the
information in the subsequent frames can be used to decide if
a single out-of-focus blob is a valid ApoBD. In other words,
detecting ApoBD in single frames means dividing a time-lapse
sequence into multiple independent events and creating noise
in the dataset. Such noise leads to task difficulty and a mis-
leading performance matrix affecting both the cell
morphology-based and our whole field of view-based ap-
proach, which has higher variability. Therefore, considering
the source of errors and the nature of the task, we investigated
using a temporal constraint to the results from single frames
instead.

3.2 Temporal constraint and ResNet50 predict the

onset of apoptosis

After validating the robustness of our classifier in detecting
ApoBD, our next step was to determine the accuracy of pre-
dicting the onset of PCD using our temporal constraint. The
results showed that our approach achieved high accuracy for
videos without ApoBD release but may miss a PCD event
when the debris is barely visible. For ApoBD-negative events,
our approach achieved robust performance with an average
error below 0.1 frames with predictions from any classifier
(Fig. 5B, the first column). Such performance indicates the ro-
bustness of classifiers, and the temporal constraint prevents
most false calls of ApoBD release. However, the average error

of cell-death events increased to two frames, depending on the
classifier selection (Fig. 5B, the second column). As all classi-
fiers performed well on videos without cell death, we chose
the model that performed the best on death events, ResNet50,
for this study.

ResNet50 reached the most effective detection performance
for videos with ApoBD release with the lowest mean error of
one frame. Such performance is comparable to predicting ap-
optosis using only cell morphology in cropped image patch se-
quence (Mobiny et al. 2020). To investigate why ResNet50
outperformed other networks, we inspected the images guided
by a biological expert. For example, ResNet18 missed the two
bright but out-of-focus ApoBDs in the fifth frame in Video IV
in Fig. 5A but ResNet50 correctly classified it as ApoBD posi-
tive, thus spotting this apoptosis event accurately. These anal-
yses revealed that ResNet50 could cope with the variations in
focus within a time-lapse sequence better than other net-
works, and ResNet50 gives the best death time prediction for
our ApoBD-based pipeline.

3.3 We created an ApoBD segmentation model for

the efficient identification of apoptotic cells

The final step of our pipeline is to map individual ApoBDs to
the dying cell at the onset of apoptosis. To obtain a segmenta-
tion model for ApoBDs, we automatically generated a seg-
mentation dataset of ApoBD to train a detection model. As
mentioned, Grad-CAM applied on our trained ResNet50 gen-
erated the necessary RoI covering most of the ApoBDs and
cells (magenta contour in Fig. 6A, Row 1). Furthermore, our
success in selective instance removal created filtered images
with minimum artifacts (Fig. 6A, Row 2) and proved that the
ResNet50 did achieve high classification performance using
relevant features. As a result, our approach created a high-
quality segmentation dataset in an automated fashion
(Fig. 6A, Row 3).

After training, the MaskRCNN model successfully detected
ApoBD in phase-contrast images. The model achieved the
best average IoU at 0.75 against the testing dataset, which we
considered satisfactory for two reasons. First, we created the
GT masks automatically and based on pixel intensity, so there

Figure 4. A comparison of the performance of five available deep neural networks. (A) The table showed that the Inception network performed the best in

accuracy, precision, and the F-1 score. (B) We compared the AlexNet and Inception networks’ performance w.r.t. the GT. Visual examples showed that

compared to the AlexNet, the Inception network successfully classified the more complex images with finer details (arrows). (C) Visual examples of

Inception networks’ prediction in the format of a confusion matrix showed that despite the overwhelmingly successful performance of the Inception

network, there were still rare failures due to details in images (arrows).
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will be a difference of several pixels than manual annotation
(Gómez-de-Mariscal et al. 2019). However, from a practical
standpoint, if the predicted centers of ApoBDs are correct,
such an error is acceptable. In addition, forcing the network
to match our annotation can lead to model over-fitting.
Second, detecting small debris in heterogeneous data is more
challenging and usually requires post-processing. Hence, con-
sidering that our dataset shows high variability in ApoBD
morphology (as in Fig. 2), the average IoU we got is more
than acceptable for such a difficult task.

As a further validation, we tested MaskRCNN’s robustness
by visualizing the inference result for raw, unprocessed images

of which the GT was unavailable (Fig. 6B). Based on visual
examples, we found MaskRCNN detected ApoBDs regardless
of morphology (color and size) and rejected those attached to
the cell body (Fig. 6B, nanowells B and C). The segmentation
performance was only erroneous for multiple small and over-
lapping ApoBDs (Fig. 6B, nanowell D). The performance of
MaskRCNN indicates that the RoIs we rejected during pre-
processing share similar morphology with those we preserved,
thus justifying the removal. With the trained MaskRCNN
model, we performed segmentation of ApoBDs and measured
the distance between debris and cells to identify which cell
was going through apoptosis (yellow block in Fig. 6C).

Figure 5. The illustration of our method for assessing the time of cell death by detecting three subsequent frames with ApoBDs presented. In this case,

the Resnet50 provided the most effective performance. (A) Visual comparison of the detection performance of Resnet18 and Resnet50. The boxes with

star sign highlight nanowells that were labeled to contain ApoBDs. (B) Table of comparative performance of the five neural networks predicting the onset

of apoptosis.

Figure 6. The method for identifying apoptotic cells based on the distribution of ApoBDs. (A) Illustrating the steps for automatically generating

segmentations of ApoBDs and cells for four sample nanowells. First, the Resnet50 neural network delineated the RoIs as the contours. The second row

shows the result of artifact elimination using size-based filtering of the objects (blobs) in the nanowells. The third row shows the results of instance

segmentation with contours with arrow indicating cells and the ones without indicating ApoBDs. (B) Visual examples of effective ApoBD detection using a

mask RCNN trained on the segmentations created as in (A), but when run directly on the raw, unfiltered images. (C) The associative process identified

apoptotic cells and labeled them with the boxes. We used majority voting across frames to remove rare detection failures highlighted by the arrow.
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The majority vote across three frames helped us reject the in-
correct apoptotic cell candidate, which arose from failed cell
detection in a single frame (the third frame of Nanowell III in
Fig. 6C).

3.4 Our approach expands apoptosis detection

solely based on Annexin-V

Our pipeline complements the Annexin-V-based apoptosis de-
tection as only about 30% of apoptotic events exhibited a de-
tectable Annexin-V signal. We profiled ApoBD-releasing
apoptosis events from three killing assay experiments, and the
Annexin-V staining only indicated 32%, 23%, and 28% of
events (Fig. 7A). These results suggest that Annexin-V-based
staining is insufficient for the reliable detection of PCD, at
least with T-cell-based killing. Furthermore, it illustrates the
importance of our label-free detection method in detecting
70% of the events. It is impractical to retrieve those missed
events using a lower Annexin-V signal threshold, as a thresh-
old lower than 0.1 is too sensitive. Moreover, our approach is
independent of cell segmentation, failure of which can lead to
wrong measurements for fluorescent signal or cell morphol-
ogy. In summary, our method demonstrated robustness and
achieved superior results compared to conventional methods
of identifying PCD.

3.5 Annexin-V localized toward the IS in the Mel526-

TIL system

Our study of ApoBD-releasing events revealed that the
Annexin-V signal localized toward the IS in the Mel526-TIL
system. Through visualization, we confirmed that a high IoU
(>0.5) of Annexin-V against the cell body indicates an even
distribution (Fig. 7C and D), and a low IoU indicates localized
staining (Fig. 7E and F). From visual inspection, localized
Annexin-V has an affinity to the IS, the interface between ef-
fector and target cells in contact. As IS plays a critical role in
tumor-killing mechanisms (Jang et al. 2015, Xiong et al.
2018, Lee et al. 2020), we divided all events into two catego-
ries: with (killing) or without (non-killing) tumor–effector
contact to correlate death marker localization with ISs.
Compared with non-killing events, killing events showed a
higher frequency of polarized Annexin-V (Fig. 7B).
Furthermore, the PCC provides quantified results on
Annexin-V localization toward ISs. For events with a broad
Annexin-V distribution (IoU>0.6), since ISs are usually of
smaller areas than cells unless two cells are tightly conjugated,
PCC against most cells exceeds that against the corresponding
IS (Fig. 7G). In contrast, for events with a restricted Annexin-
V image, PCC against IS surpassed that against the cell, mean-
ing that the bright blob in the fluorescent channel is close to
the RoI demarcating IS.

Figure 7. Summary of critical experimental findings. (A) Only about 30% of apoptotic cells we found exhibited a detectable Annexin-V signal, implying that

only the proposed ApoBD-distribution-based method can successfully find nearly 70% of them. Therefore, the proposed method offers two significant

benefits—the reliable performance of apoptosis detection in a label-free fashion and the ability to handle numerous cases with undetectable Annexin-V

signals. (B–E) Four sample cells illustrate Annexin-V signal with different IoU values. Cells D and E have low IoU valueshighlighted by arrows with dashed

outline and dashed circle in panel G, while cells B and C display an evenly distributed Annexin-V signal with high IoU indicating the cell body. (F) An IoU-

based comparison of the spatial overlap of the Annexin-V signal and the neural-network-based segmentations of apoptotic cells. Signal with low IoU

values is harder to detect and vice versa. The result showed that more killing events had Annexin-V signal localized than non-killing events. (G) Our

analyses showed that the Annexin-V signal polarizing toward the IS has lower IoU during the killing events.
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The polarization of the Annexin-V is an interesting phe-
nomenon because it indicates a local increase of lipid density
in the cell membrane. Previous work (Rudd-Schmidt et al.
2019) showed that the localization of PS toward the presyn-
aptic membrane of a T-cell enhances the protection against
perforin, a protein essential for the target cell killing mecha-
nism. To test if localized Annexin-V staining was correlated
with the tumor-cell escape from T-cell mediated killing, we
collected 17 videos where Annexin-V polarized toward the
target cell side of IS. After visual validation, 17 out of 17
events (examples in Supplementary Videos) showed evident
change (cell blubbing or ApoBD release) in cell morphology
associated with PCD revealing that localized Annexin-V stain-
ing at IS was not associated with tumor-cell survival upon T-
cell attack.

4 Discussion

4.1 Toward a robust and comprehensive apoptosis

detection

As shown in our results, Annexin-V is inadequate as the sole
standard in high-throughput imaging assays as the means of
apoptosis detection have increased, and several factors can
challenge the robustness of Annexin-V imaging (Lederle et al.
2011, Kim et al. 2015). First, in addition to apoptosis, the cell
membrane also ruptures and exposes PS during necrosis, so
Annexin-V staining will cause confusion when classifying sub-
types of cell death (Crowley et al. 2016). Second, the high
background activity and signal multiplexing will affect the im-
age quality of Annexin-V imaging, which is detrimental to
high-speed imaging and its downstream analysis. These draw-
backs undermine the reliability of Annexin-based assays and
the deep-learning models trained on the GT from such assays
(Kwak et al. 2015). Our results showed that even in our
in vitro assay, Annexin-V failed as an apoptosis indicator de-
spite apparent visual clues in images. Our ApoBD segmenta-
tion model successfully detected apoptosis based solely on
time series of phase-contrast images, and the model’s perfor-
mance in detecting apoptosis is at least as good as standard
Annexin-V staining. As shown in Fig. 5, our model utilizes in-
formation from multiple frames to accurately determine the
time of apoptosis. On the other hand, if time-lapse images are
unavailable, the ApoBD model yields an F-score of 0.9, which
can be further improved using either more training data or in-
tegrating information from molecular markers whenever
available. By leveraging a combination of molecular markers,
widely used cell-death indicators like Calcein AM (Jang et al.
2015), and deep-learning powered computer vision algo-
rithms, it is possible to create a multi-modal approach with
high performance even for the detection of apoptosis within
individual image frames.

4.2 Detecting small objects offers data toward a

further mechanistic understanding

The performance of our ApoBD segmentation model demon-
strated the power of state-of-the-art algorithms but also
revealed the value of segmenting small objects in medical
images. The segmentation of tiny instances is arduous due to
lower resolution, fewer presented features, higher average
density, and longer time for human annotation (Hesamian
et al. 2019, Wang et al. 2022). The advancement of computer
vision algorithms has enabled the segmentation of small
objects, like small brain tumors and exosomes, and the

generation of a quantitative heatmap from an image classifier
(Selvaraju et al. 2017, Ngo et al. 2020, Wang et al. 2021).
With these techniques, imaging assays will achieve better reso-
lution in profiling small objects without relying on fluorescent
labels and wasting excessive time. With our detection method,
it is possible to conduct a quantitative analysis of the mecha-
nistic role of ApoBD with fewer resources. For example,
ApoBDs can carry various types of cargo and induce different
biological responses, and a robust segmentation like ours pro-
vides high-level information like the engulfment time of
ApoBDs. In addition, with no extra label needed for detec-
tion, we reduced the effect of signal multiplexing when imag-
ing functional molecules in ApoBD. Our work will help
simplify the experimental design to reveal the unknown mech-
anistic role that ApoBD and apoptosis play.

4.3 Conclusion

Including the analysis of ApoBDs in label-free detection of ap-
optotic cells in high-throughput assays is practical as well as
beneficial, and deep neural networks, with their ability to
cope with image variability and learning from examples, are
enabling. Our multi-scale image analysis strategy using multi-
ple deep networks in a synergistic manner yields more reliable
apoptotic cell detection with spatial locations and masks for
the ApoBDs that can be used to profile their molecular car-
goes. Creating large human-annotated training datasets is a
common challenge in deploying deep neural networks. Our
study also showed the practicality of generating high-quality
training datasets in a resource-efficient manner for training re-
liable models. Despite the high variability and modest training
datasets, the deep CNNs achieved robust performance.
Overall, our method can be used in various ways, e.g. comple-
menting Annexin-V-based methods for apoptotic cell detec-
tion and profiling ApoBDs to advance imaging assay and
immunotherapies.
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Turiák L, Misják P, Szabó TG et al. Proteomic characterization of
thymocyte-derived microvesicles and apoptotic bodies in BALB/c
mice. J Proteomics 2011;74:2025–33.

Vermes I, Haanen C, Steffens-Nakken H et al. A novel assay for apopto-
sis flow cytometric detection of phosphatidylserine expression on
early apoptotic cells using fluorescein labelled annexin-V. J Immunol
Methods 1995;184:39–51.

Wang W, Liang D, Chen Q et al. Medical image classification using deep
learning. In: Chen YW, Jain LC (eds) Deep Learning in Healthcare:
Paradigms and Applications. 2020, 33–51.

Wang X, Zhu D, Yan Y. Towards efficient detection for small objects
via attention-guided detection network and data augmentation.
Sensors 2022;22:7663.

Wang Z, Wang S, Chen G et al. Deep learning based label-free small ex-
tracellular vesicles analyzer with light-sheet illumination differenti-
ates normal and cancer liver cells. Sens Actuators B Chem 2021;347:
130612.

Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp
Clin Cancer Res 2011;30:1–14.

Xiao H, Li L, Liu Q et al. Transformers in medical image segmentation:
a review. Biomed Signal Process Control 2023;84:104791.

Xiong W, Chen Y, Kang X et al. Immunological synapse predicts effec-
tiveness of chimeric antigen receptor cells. Mol Ther 2018;26:
963–75.

Xu X, Lai Y, Hua Z-C. Apoptosis and apoptotic body: disease message
and therapeutic target potentials. Biosci Rep 2019;39:BSR201
80992.

Zhang G, Gurtu V, Kain SR et al. Early detection of apoptosis using a
fluorescent conjugate of annexin-V. Biotechniques 1997;23:525–31.

Zhang L, Wen Y. A transformer-based framework for automatic
COVID19 diagnosis in chest CTs. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, BC,
Canada, 11-17 October. 513–8. IEEE, 2021.

Zhang Y-D, Govindaraj VV, Tang C et al. High performance multiple
sclerosis classification by data augmentation and AlexNet transfer
learning model. J Med Imaging Health Inform 2019;9:2012–21.

Zhou L, Liu H, Bae J et al. Self pre-training with masked autoencoders
for medical image classification and segmentation. In 2023 IEEE
20th International Symposium on Biomedical Imaging (ISBI),
Cartagena de Indias ,Colombia, 18-21 April. 1-6. IEEE, 2023.

Label-free detection of apoptotic bodies in high-throughput time-lapse microscopy 11

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/10/btad584/7286441 by U
niversity of H

ouston user on 30 O
ctober 2023


	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	Acknowledgements
	Funding
	References


